The Effect of Movement Frequency on Interlimb Coupling during Recumbent Stepping

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

During passive lower limb movement, active use of the upper limbs increases unintentional lower limb muscle activation. We hypothesized that faster movement frequencies would amplify lower limb muscle activation during upper limb exertion but would not affect lower limb muscle activation when the upper limbs were relaxed. We studied 10 healthy participants exercising on a recumbent stepping machine that mechanically coupled the four limbs via handles and pedals. Participants exercised at four frequencies (30, 60, 90, 120 steps/min) under four conditions of active and passive movement. Self-driven lower limb motion resulted in greater muscle activation compared to externally driven lower limb motion. Muscle activation amplitude increased with frequency for all conditions except for externally driven stepping. These results indicate that fast upper limb movement facilitates neuromuscular recruitment of lower limb muscles during stepping tasks. If a similar effect occurs in neurologically impaired individuals during active stepping, self-assisted exercise might enhance neuromuscular recruitment during rehabilitation.

The authors are with the Dept of Movement Science, University of Michigan, Ann Arbor, MI 48109-2214.

All Time Past Year Past 30 Days
Abstract Views 52 52 2
Full Text Views 1 1 0
PDF Downloads 3 3 0