Coupling of Force Variability in Bimanual Tapping with Asymmetrical Force

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

An experiment was conducted to examine the coupling of force variability in bimanual finger tapping sequences with asymmetrical forces. Right-handed participants were trained to produce bimanual finger tapping sequences consisted of an intertap interval of 500 ms and eight force conditions: two alternating force left high, two alternating force right high, two simultaneous force left high, and two simultaneous force right high conditions. During practice, visual force feedback was provided for both hands performing the bimanual tapping sequences. After practice, the participants produced the learned tapping sequences in the absence of feedback. Most importantly, whereas the peak force variability of the nondominant left hand was larger than that of the dominant right hand under the right high conditions, there was no left–right difference under the simultaneous left high conditions. This suggests that under the simultaneous left high conditions, both hemispheres were activated, resulting in overflow in the right hand, and bringing the two force variabilities closer together.

The author is with the Dept of Human Motor Control, Naruto University of Education, Naruto, Japan.

All Time Past Year Past 30 Days
Abstract Views 9 9 4
Full Text Views 0 0 0
PDF Downloads 0 0 0