Speed–Accuracy Trade-Off in Voluntary Postural Movements

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

We investigated the speed and accuracy of fast voluntary movements performed by the whole body during standing. Adults stood on a force plate and performed rhythmic postural movements generating fore and back displacements of the center of pressure (shown as online visual feedback). We observed that for the same target distance, movement time increased with the ratio between target distance and target width, as predicted by Fitts’–type relationships. For different target distances, however, the linear regressions had different slopes. Instead, a single linear relation was observed for the effective target width versus mean movement speed. We discuss this finding as a result of the pronounced inherent variability of the postural control system and when such a source of variability is considered, the observed relationship can be explained. The results reveal that the accuracy of fast voluntary postural movements is deteriorated by the variability due to sway during standing.

The authors are with the Laboratory of Biophysics, Escola de Educação Física e Esporte, Universidade de São Paulo, Brazil.

All Time Past Year Past 30 Days
Abstract Views 111 111 7
Full Text Views 11 11 0
PDF Downloads 14 14 0