Distinguishing Two Types of Variability in a Sit-to-Stand Task

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

Variability is commonly observed in complex behavior, such as the maintenance of upright posture. The current study examines the value added by using nonlinear measures of variability to identify dynamic stability instead of linear measures that reflect average fluctuations about a mean state. The largest Lyapunov exponent (λ1) and SD were calculated on mediolateral movement as participants performed a sit-to-stand task on a stable and unstable platform. Both measures identified changes in movement across postures, but results diverged when participants stood on the unstable platform. Large SD indicated an increase in movement variability, but small λ1 identified those movements as stable and controlled. The results suggest that a combination of linear and nonlinear analyses is useful in identifying the proportion of observed variability that may be attributed to structured, controlled sources. Nonlinear measures of variability, like λ1, can further be used to make predictions about transitions between stable postures and to identify a system’s resistance to disruption from external perturbations. Those features make nonlinear analyses highly applicable to both human movement research and clinical practice.

Gibbons and Amazeen are with the Department of Psychology, Arizona State University, Tempe, AZ, USA. Likens is with the University of Nebraska Omaha, Omaha, NE, USA.

Gibbons (Cameron.Gibbons@asu.edu) is corresponding author.
Motor Control
Article Sections
References
  • AdamsJ.A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior 3(2) 111149. PubMed ID: 15155169 doi:

  • AlexanderN.B.SchultzA.B. & WarwickD.N. (1991). Rising from a chair: Effects of age and functional ability on performance biomechanics. Journal of Gerontology 46(3) M91M98. PubMed ID: 2030272 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AmazeenP.G.AmazeenE.L. & TurveyM.T. (1998). Dynamics of human intersegmental coordination: Theory and research. In D.A. Rosenbaum & C.E. Collyer (Eds.) Timing of behavior: Neural psychological and computational perspectives (pp. 237259). Boston, MA: MIT Press.

    • Search Google Scholar
    • Export Citation
  • AmazeenP.G.SchmidtR.C. & TurveyM.T. (1995). Frequency detuning of the phase entrainment dynamics of visually coupled rhythmic movements. Biological Cybernetics 72(6) 511518. PubMed ID: 7612722 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BeekP.J. & LewbelA. (1995). The science of juggling. Scientific American 273(5) 9297. doi:

  • BruntD.GreenbergB.WankadiaS.TrimbleM.A. & ShechtmanO. (2002). The effect of foot placement on sit to stand in healthy young subjects and patients with hemiplegia. Archives of Physical Medicine and Rehabilitation 83(7) 924929. PubMed ID: 12098151 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChenL.C.MetcalfeJ.S.ChangT.Y.JekaJ.J. & ClarkJ.E. (2008). The development of infant upright posture: Sway less or sway differently? Experimental Brain Research 186(2) 293303. PubMed ID: 18057920 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DallP.M. & KerrA. (2010). Frequency of the sit to stand task: An observational study of free-living adults. Applied Ergonomics 41(1) 5861. PubMed ID: 19450792 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DavidsK.KingsburyD.GeorgeK.O’ConnellM. & StockD. (1999). Interacting constraints and the emergence of postural behavior in ACL-deficient subjects. Journal of Motor Behavior 31(4) 358366. PubMed ID: 11177643 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeffeyesJ.E.HarbourneR.T.KyvelidouA.StubergW.A. & StergiouN. (2009). Nonlinear analysis of sitting postural sway indicates developmental delay in infants. Clinical Biomechanics 24(7) 564570. PubMed ID: 19493596 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DesmurgetM.RossettiY.PrablancC.JeannerodM. & StelmachG.E. (1995). Representation of hand position prior to movement and motor variability. Canadian Journal of Physiology and Pharmacology 73(2) 262272. PubMed ID: 7621365 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DiedrichF.J. & WarrenJr.W.H. (1995). Why change gaits? Dynamics of the walk-run transition. Journal of Experimental Psychology: Human Perception and Performance 21(1) 183202. PubMed ID: 7707029.

    • Search Google Scholar
    • Export Citation
  • DingwellJ.B. & KangH.G. (2007). Differences between local and orbital dynamic stability during human walking. Journal of Biomechanical Engineering 129(4) 586593. PubMed ID: 17655480 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DohenyE.P.FanC.W.ForanT.GreeneB.R.CunninghamC. & KennyR.A. (2011). An instrumented sit-to-stand test used to examine differences between older fallers and non-fallers. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC (pp. 30633066).

    • PubMed
    • Export Citation
  • DonkerS.F.RoerdinkM.GrevenA.J. & BeekP.J. (2007). Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control. Experimental Brain Research 181(1) 111. PubMed ID: 17401553 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EtnyreB. & ThomasD. (2007). Event standardization of sit-to-stand movements. Physical Therapy 87(12) 16511666.

  • FiorettiS.GuidiM.LadislaoL. & GhettiG. (2004). Analysis and reliability of posturographic parameters in Parkinson patients at an early stage. In 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vol. 1 pp. 651654).

    • PubMed
    • Export Citation
  • FittsP.M. & PosnerM.I. (1967). Human Performance. Belmont, CA: Brooks/Cole.

  • FlanaganJ.R.VetterP.JohanssonR.S. & WolpertD.M. (2003). Prediction precedes control in motor learning. Current Biology 13(2) 146150. PubMed ID: 12546789 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FujimotoM. & ChouL.S. (2012). Dynamic balance control during sit-to-stand movement: an examination with the center of mass acceleration. Journal of Biomechanics 45(3) 543548. PubMed ID: 22169151 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GalliM.CimolinV.CrivelliniM. & CampaniniI. (2004). Quantitative analysis of sit to stand movement: Experimental set-up definition and application to healhty and hemiplegic adults. Gait & Posture 28(1) 8085.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GibbonsC.T.AmazeenP.G. & JondacJ.J. (2019). Thinking on your feet: An analysis of movement and cognition in a sit to stand task. Acta Psychologica 192 5258. PubMed ID: 30412840 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GibbonsC.T.AmazeenP.G. & LikensA.D. (2019). Effects of foot placement on postural sway in the AP and ML directions. Motor Control 23 149170. PubMed ID: 30518285 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GormanJ.C.HesslerE.E.AmazeenP.G.CookeN.J. & ShopeS.M. (2012). Dynamical analysis in real time: Detecting perturbations to team communication. Ergonomics 55(8) 825839. PubMed ID: 22533819 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GredinV. & WilliamsA.M. (2015). The relative effectiveness of various instructional approaches during the performance and learning of motor skills. Journal of Motor Behavior 48(1) 8697. PubMed ID: 26226063 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GreveC.ZijlstraW.HortobágyiT. & BongersR.M. (2013). Not all is lost: Old adults retain flexibility in motor behaviour during sit-to-stand. PLoS ONE 8(10) e77760. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HakenH.KelsoJ.A.S. & BunzH. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics 51(5) 347356. PubMed ID: 3978150 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HalsbandU. & LangeR.K. (2006). Motor learning in man: A review of functional and clinical studies. Journal of Physiology-Paris 99(4) 414424. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarbourneR.T. & StergiouN. (2003). Nonlinear analysis of the development of sitting postural control. Developmental Psychobiology 42(4) 368377. PubMed ID: 12672087 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HarbourneR.T. & StergiouN. (2009). Movement variability and the use of nonlinear tools: Principles to guide physical therapist practice. Physical Therapy 89(3) 267282. PubMed ID: 19168711 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HileyM.J.ZuevskyV.V. & YeadonM.R. (2013). Is skilled technique characterized by high or low variability? An analysis of high bar giant circles. Human Movement Science 32(1) 171180. PubMed ID: 23465724 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HirschfeldH.ThorsteinsdottirM. & OlssonE. (1999). Coordinated ground forces exerted by buttocks and feet are adequately programmed for weight transfer during sit-to-stand. Journal of Neurophysiology 82(6) 30213029. PubMed ID: 10601437 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HodgesN.J. & CoppolaT. (2015). What we think we learn from watching others: The moderating role of ability on perceptions of learning from observation. Psychological Research 79(4) 609620. PubMed ID: 24951055 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HoytD.F. & TaylorC.R. (1981). Gait and the energetics of locomotion in horses. Nature 292(5820) 239240. doi:

  • HughesM.A.WeinerD.K.SchenkmanM.L.LongR.M. & StudenskiS.A. (1994). Chair rise strategies in the elderly. Clinical Biomechanics 9(3) 187192. PubMed ID: 23916180 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JanssenW.G.BussmannH.B. & StamH.J. (2002). Determinants of the sit-to-stand movement: A review. Physical therapy 82(9) 866879. PubMed ID: 12201801

    • Search Google Scholar
    • Export Citation
  • KantzH. & SchreiberT. (2004). Nonlinear time series analysis. Cambridge, UK: Cambridge University Press.

  • KaplanD. & GlassL. (2012). Understanding nonlinear dynamics. New York, NY: Springer Science & Business Media.

  • KawagoeS.TajimaN. & ChosaE. (2000). Biomechanical analysis of effects of foot placement with varying chair height on the motion of standing up. Journal of Orthopaedic Science 5(2) 124133. PubMed ID: 10982646 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KelsoJ.A. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology-Regulatory Integrative and Comparative Physiology 246(6) R1000R1004. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KerrK.M.WhiteJ.A.BarrD.A. & MollanR.A.B. (1997). Analysis of the sit-stand-sit movement cycle in normal subjects. Clinical Biomechanics 12(4) 236245. PubMed ID: 11415728 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KimJ.W.KwonY.JeonH.M.BangM.J.JunJ.H.EomG.M. & LimD.H. (2014). Feet distance and static postural balance: Implication on the role of natural stance. Bio-medical Materials and Engineering 24(6) 26812688. PubMed ID: 25226972.

    • Search Google Scholar
    • Export Citation
  • KirbyR.L.PriceN.A. & MacLeodD.A. (1987). The influence of foot position on standing balance. Journal of Biomechanics 20(4) 423427. PubMed ID: 3597457 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KrampeR.T.KlieglR.MayrU.EngbertR. & VorbergD. (2000). The fast and the slow of skilled bimanual rhythm production: Parallel versus integrated timing. Journal of Experimental Psychology: Human Perception and Performance 26(1) 206233. PubMed ID: 10696614.

    • Search Google Scholar
    • Export Citation
  • LadislaoL. & FiorettiS. (2007). Nonlinear analysis of posturographic data. Medical & Biological Engineering & Computing 45(7) 679688. PubMed ID: 17611787 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LamothC.J. & van HeuvelenM.J. (2012). Sports activities are reflected in the local stability and regularity of body sway: Older ice-skaters have better postural control than inactive elderly. Gait & Posture 35(3) 489493. PubMed ID: 22178031 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LeeD.N. & LishmanJ.R. (1975). Visual proprioceptive control of stance. Journal of Human Movement Studies 1(2) 8795.

  • LiuK.WangH.XiaoJ. & TahaZ. (2015). Analysis of human standing balance by largest Lyapunov exponent. Computational Intelligence and Neuroscience 2015 158478. PubMed ID: 25866500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LockhartT.E. & LiuJ. (2008). Differentiating fall-prone and healthy adults using local dynamic stability. Ergonomics 51(12) 18601872. PubMed ID: 19034782 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MaxwellJ.P.MastersR.S.W. & EvesF.F. (2003). The role of working memory in motor learning and performance. Consciousness and Cognition 12(3) 376402. PubMed ID: 12941284 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MazzàC.BenvenutiF.BimbiC. & StanhopeS.J. (2004). Association between subject functional status, seat height, and movement strategy in sit-to-stand performance. Journal of the American Geriatrics Society 52(10) 17501754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MillingtonP.J.MyklebustB.M. & ShambesG.M. (1992). Biomechanical analysis of the sit-to-stand motion in elderly persons. Archives of Physical Medicine and Rehabilitation 73(7) 609617. PubMed ID: 1622314.

    • Search Google Scholar
    • Export Citation
  • MurataA. & IwaseH. (1998). Chaotic analysis of body sway. In 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (Vol 3 pp. 15571560).

    • Export Citation
  • NewellK.M.van EmmerikR.E.LeeD. & SpragueR.L. (1993). On postural stability and variability. Gait & Posture 1(4) 225230. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PackardN.H.CrutchfieldJ.P.FarmerJ.D. & ShawR.S. (1980). Geometry from a time series. Physical Review Letters 45(9) 712716. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PellecchiaG.L. (2003). Postural sway increases with attentional demands of concurrent cognitive task. Gait & Posture 18(1) 2934. PubMed ID: 12855298 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PollockA.S.DurwardB.R.RoweP.J. & PaulJ.P. (2000). What is balance? Clinical Rehabilitation 14(4) 402406. PubMed ID: 10945424 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RileyM.A.BalasubramaniamR. & TurveyM.T. (1999). Recurrence quantification analysis of postural fluctuations. Gait & Posture 9(1) 6578. PubMed ID: 10575072 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RileyP.O.SchenkmanM.L.MannR.W. & HodgeW.A. (1991). Mechanics of a constrained chair-rise. Journal of Biomechanics 24(1) 7785. PubMed ID: 2026635 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RodoskyM.W.AndriacchiT.P. & AnderssonG.B. (1989). The influence of chair height on lower limb mechanics during rising. Journal of Orthopaedic Research 7(2) 266271. PubMed ID: 2918425 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RoerdinkM.De HaartM.DaffertshoferA.DonkerS.F.GeurtsA.C.H. & BeekP.J. (2006). Dynamical structure of center-of-pressure trajectories in patients recovering from stroke. Experimental Brain Research 174(2) 256269. PubMed ID: 16685508 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RosensteinM.T.CollinsJ.J. & De LucaC.J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena 65(1) 117134. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RoyG.NadeauS.GravelD.MalouinF.McFadyenB.J. & PiotteF. (2006). The effect of foot position and chair height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis. Clinical Biomechanics 21(6) 585593. PubMed ID: 16540217 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SalmoniA.W.SchmidtR.A. & WalterC.B. (1984). Knowledge of results and motor learning: A review and critical reappraisal. Psychological Bulletin 95(3) 355386. PubMed ID: 6399752 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchenkmanM.RileyP.O. & PieperC. (1996). Sit to stand from progressively lower seat heights– Alterations in angular velocity. Clinical Biomechanics 11(3) 153158. PubMed ID: 11415613 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchmidtR.C.CarelloC. & TurveyM.T. (1990). Phase transitions and critical fluctuations in the visual coordination of rhythmic movements between people. Journal of Experimental Psychology: Human Perception and Performance 16(2) 227247. PubMed ID: 2142196.

    • Search Google Scholar
    • Export Citation
  • ScholzJ.P. & SchönerG. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research 126(3) 289306. PubMed ID: 10382616 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SharkeyS.G. & FolkinsJ.W. (1985). Variability of lip and jaw movements in children and adults: Implications for the development of speech motor control. Journal of Speech Language and Hearing Research 28(1) 815. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SheridanP.L.SolomontJ.KowallN. & HausdorffJ.M. (2003). Influence of executive function on locomotor function: Divided attention increases gait variability in Alzheimer’s disease. Journal of the American Geriatrics Society 51(11) 16331637. PubMed ID: 14687395 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SpringerS.GiladiN.PeretzC.YogevG.SimonE.S. & HausdorffJ.M. (2006). Dual-tasking effects on gait variability: The role of aging, falls, and executive function. Movement Disorders 21(7) 950957. PubMed ID: 16541455 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StergiouN. & DeckerL.M. (2011). Human movement variability, nonlinear dynamics, and pathology: Is there a connection? Human Movement Science 30(5) 869888. PubMed ID: 21802756 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StergiouN.HarbourneR.T. & CavanaughJ.T. (2006). Optimal movement variability: A new theoretical perspective for neurologic physical therapy. Journal of Neurologic Physical Therapy 30(3) 120129. PubMed ID: 17029655 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StinsJ.F.RoerdinkM. & BeekP.J. (2011). To freeze or not to freeze? Affective and cognitive perturbations have markedly different effects on postural control. Human Movement Science 30(2) 190202. PubMed ID: 20727608 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TakenF. (1981). Detecting strange attractors in turbulence. In D. Rand & L. Young (Series Eds.) Lecture notes in Mathematics. Dynamical systems and turbulence (Vol. 898 pp. 366381). Berlin, DE: Springer-Verlag.

    • Search Google Scholar
    • Export Citation
  • van EmmerikR.E.A. & van WegenE.E.H. (2002). On the functional aspects of variability in postural control. Exercise and Sport Sciences Reviews 30(4) 177183. PubMed ID: 12398115 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van WegenE.E.H.van EmmerikR.E.A. & RiccioG.E. (2002). Postural orientation: Age-related changes in variability and time-to-boundary. Human Movement Science 21(1) 6184. PubMed ID: 11983434 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WeinerD.K.LongR.HughesM.A.ChandlerJ. & StudenskiS. (1993). When older adults face the chair-rise challenge: A study of chair height availability and height-modified chair-rise performance in the elderly. Journal of the American Geriatrics Society 41(1) 610. PubMed ID: 8418126 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WilsonC.SimpsonS.E.van EmmerikR.E. & HamillJ. (2008). Coordination variability and skill development in expert triple jumpers. Sports Biomechanics 7(1) 29. PubMed ID: 18341132 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WoollacottM. & Shumway-CookA. (2002). Attention and the control of posture and gait: A review of an emerging area of research. Gait & Posture 16 14. PubMed ID: 12127181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • YamadaN. (1995). Chaotic swaying of the upright posture. Human Movement Science 14(6) 711726. doi:

  • YamadaT. & DemuraS.I. (2004). Influence of the relative difference in chair seat height according to different lower thigh length on floor reaction force and lower-limb strength during sit-to-stand movement. Journal of Physiological Anthropology and Applied Human Science 23(6) 197203. PubMed ID: 15599063 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • YehT.T.CluffT. & BalasubramaniamR. (2014). Visual reliance for balance control in older adults persists when visual information is disrupted by artificial feedback delays. PLoS ONE 9(3) e91554. PubMed ID: 24614576 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 139 139 107
Full Text Views 2 2 2
PDF Downloads 3 3 3
Altmetric Badge
PubMed
Google Scholar