The Within-Subjects Effects of Practice on Performance of Drop Landing in Healthy, Young Adults

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

Most studies of high-speed lower body movements include practice repetitions for facilitating consistency between the trials. We investigated whether 20 repetitions of drop landing (from a 30.5-cm platform onto a force plate) could improve consistency in maximum ground reaction force, linear lower body stiffness, depth of landing, and jump height in 20 healthy, young adults. Coefficient of variation was the construct for variability used to compare the first to the last five repetitions for each variable. We found that the practice had the greatest effect on maximum ground reaction force (p = .017), and had smaller and similar effects on lower body stiffness and depth of landing (p values = .074 and .044, respectively), and no measurable effect on jump height. These findings suggest that the effect of practice on drop landing differs depending upon the variable measure and that 20 repetitions significantly improve consistency in ground reaction force.

The authors are with the Department of Physical Therapy, Missouri State University, Springfield, MO, USA.

Hackney (jameshackney@missouristate.edu) is corresponding author.
  • Ambegaonkar, J.P., Shultz, S.J., & Perrin, D.H. (2011). A subsequent movement alters lower extremity muscle activity and kinetics in drop jumps vs drop landings. The Journal of Strength & Conditioning Research, 25(10), 2781–2788. PubMed ID: 21873898 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bartlett, R., Wheat, J., & Robins, M. (2007). Is movement variability important for sports biomechanists? Sports Biomechanics, 6(2), 224–243. PubMed ID: 17892098 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blickhan, R., & Full, R.J. (1993). Similarity in multi-legged locomotion: Bouncing like a monopode. Journal of Comparative Physiology A, 173(5), 509–517. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnett, D.R., Campbell-Kyureghyan, N.H., Topp, R.V., & Quesada, P.M. (2015). Biomechanics of lower limbs during walking among candidates for total knee arthroplasty with and without low back pain. BioMed Research International, 2015, 1–8. PubMed ID: 26171387 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callaghan, M.J., McCarthy, C.J., Al-Omar, A., & Oldham, J.A. (2000). The reproducibility of multi-joint isokinetic and isometric assessments in a healthy and patient population. Clinical Biomechanics, 15(9), 678–683. PubMed ID: 10946101 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donatelli, R. (2007). Sports specific rehabilitation. St. Louis, MO: Elsevier.

  • Dudek, D.M., & Full, R.J. (2006). Passive mechanical properties of legs from running insects. Journal of Experimental Biology, 209(8), 1502–1515. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emken, J.L., & Reinkensmeyer, D.J. (2005). Robot-enhanced motor learning: Accelerating internal model formation during locomotion by transient dynamic amplification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 13(1), 33–39. PubMed ID: 15813404 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Farley, C.T., Houdijk, H.H., Van Strien, C., & Louie, M. (1998). Mechanism of leg stiffness adaptation for hopping on surfaces of different stiffnesses. Journal of Applied Physiology, 85(3), 1044–1055. PubMed ID: 9729582 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fukano, M., Kuroyanagi, Y., Fukubayashi, T., & Banks, S. (2014). Three-dimensional kinematics of the talocrural and subtalar joints during drop landing. Journal of Applied Biomechanics, 30(1), 160–165. PubMed ID: 23677854 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hackney, J.M., Clay, R.L., & James, M. (2016). Force-displacement differences in the lower extremities of young healthy adults between drop jumps and drop landings. Human Movement Science, 49, 79–86. PubMed ID: 27344129 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, C.R., Herman, J.A., Dufek, J.S., & Bates, B.T. (2007). Number of trials necessary to achieve performance stability of selected ground reaction force variables during landing. Journal of Sports Science & Medicine, 6(1), 126. PubMed ID: 24149234

    • Search Google Scholar
    • Export Citation
  • Kopell, N., & Howard, L.N. (1975). Bifurcations and trajectories joining critical points. Advances in Mathematics, 18(3), 306–358. doi:

  • Kuitunen, S., Avela, J., Kyröläinen, H., Nicol, C., & Komi, P. (2002). Acute and prolonged reduction in joint stiffness in humans after exhausting stretch-shortening cycle exercise. European Journal of Applied Physiology, 88(1–2), 107–116. PubMed ID: 12436277 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulas, A., Schmitz, R., Schultz, S., Watson, M., & Perrin, D. (2006). Energy absorption as a predictor of leg impedance in highly trained females. Journal of Applied Biomechanics, 22(3), 177–185.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaStayo, P.C., Woolf, J.M., Lewek, M.D., Snyder-Mackler, L., Reich, T., & Lindstedt, S.L. (2003). Eccentric muscle contractions: Their contribution to injury, prevention, rehabilitation, and sport. Journal of Orthopaedic & Sports Physical Therapy, 33(10), 557–571. PubMed ID: 14620785 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leukel, C., Taube, W., Lorch, M., & Gollhofer, A. (2012). Changes in predictive motor control in drop-jumps based on uncertainties in task execution. Human Movement Science, 31(1), 152–160. PubMed ID: 21757248 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKinnon, C.D., & Winter, D.A. (1993). Control of whole body balance in the frontal plane during human walking. Journal of Biomechanics, 26(6), 633–644. PubMed ID: 8514809 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Macpherson, J. (1992). Why biomechanics? In F. Horak, & M.H. Woollacott (Eds.), Posture and Gait: Control Mechanisms, 1992 : XIth International Symposium of the Society for Postural and Gait Research, (pp. 340–343). Portland, OR:  Society for Postural and Gait Research.

    • Search Google Scholar
    • Export Citation
  • Márquez, G., Aguado, X., Alegre, L.M., Lago, Á.,Acero, R.M., & Fernández-del-Olmo, M. (2010). The trampoline aftereffect: The motor and sensory modulations associated with jumping on an elastic surface. Experimental Brain Research, 204(4), 575–584. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNeal, J.R., Sands, W.A., & Stone, M.H. (2010). Effects of fatigue on kinetic and kinematic variables during a 60-second repeated jumps test. International Journal of Sports Physiology and Performance, 5(2), 218–229. PubMed ID: 20625194 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McNitt-Gray, J.L., Hester, D.M.E., Mathiyakom, W., & Munkasy, B.A. (2001). Mechanical demand and multijoint control during landing depend on orientation of the body segments relative to the reaction force. Journal of Biomechanics, 34(11), 1471–1482. PubMed ID: 11672722 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Medina, J.M., McLeod, T.C.V., Howell, S.K., & Kingma, J.J. (2008). Timing of neuromuscular activation of the quadriceps and hamstrings prior to landing in high school male athletes, female athletes, and female non-athletes. Journal of Electromyography and Kinesiology, 18(4), 591–597. PubMed ID: 17306564 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Minetti, A.E. (1998). Using leg muscles as shock absorbers: Theoretical predictions and experimental results of drop landing performance. Ergonomics, 41(12), 1771–1791. PubMed ID: 9857837 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moritz, C.T., & Farley, C.T. (2005). Human hopping on very soft elastic surfaces: Implications for muscle pre-stretch and elastic energy storage in locomotion. Journal of Experimental Biology, 208(5), 939–949. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moritz, C.T., Greene, S.M., & Farley, C.T. (2004). Neuromuscular changes for hopping on a range of damped surfaces. Journal of Applied Physiology, 96(5), 1996–2004. PubMed ID: 14688034 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nikooyan, A.A., & Zadpoor, A.A. (2011). Mass–spring–damper modeling of the human body to study running and hopping–an overview. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 225(12), 1121–1135. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Popovic, M., Hofmann, A., & Herr, H. (2004 April). Angular momentum regulation during human walking: Biomechanics and control. International Conference on Robotics and Automation, 2004 (Vol. 3, pp. 2405–2411). New Orleans, LA,  IEEE.

    • Export Citation
  • Portney, L.G., & Watkins, M.P. (2015). Foundations of clinical research: Applications to practice. Philadelphia, PA: FA Davis.

  • Prilutsky, B.I., & Zatsiorsky, V.M. (2002). Optimization-based models of muscle coordination. Exercise and Sport Sciences Reviews, 30(1), 32–38. PubMed ID: 11800497 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Puddle, D.L., & Maulder, P.S. (2013). Ground reaction forces and loading rates associated with parkour and traditional drop landing techniques. Journal of Sports Science & Medicine, 12(1), 122. PubMed ID: 24149735

    • Search Google Scholar
    • Export Citation
  • Racic, V., Pavic, A., & Brownjohn, J.M. (2009). Number of successive cycles necessary to achieve stability of selected ground reaction force variables during continuous jumping. Journal of Sports Science & Medicine, 8(4), 639. PubMed ID: 24149607

    • Search Google Scholar
    • Export Citation
  • Santello, M. (2005). Review of motor control mechanisms underlying impact absorption from falls. Gait & Posture, 21(1), 85–94. PubMed ID: 15536038 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R.A., Lee, T., Winstein, C., Wulf, G., & Zelaznik, H. (2018). Motor control and learning (6th ed.). Champaigne-Urbana, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Schot, P.K., Bates, B.T., & Dufek, J.S. (1994). Bilateral performance symmetry during drop landing: A kinetic analysis. Medicine & Science in Sports & Exercise, 26(9), 1153–1159. PubMed ID: 7808250 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Seegmiller, J.G., & McCaw, S.T. (2003). Ground reaction forces among gymnasts and recreational athletes in drop landings. Journal of Athletic Training, 38(4), 311. PubMed ID: 14737212

    • Search Google Scholar
    • Export Citation
  • Sell, T.C., Ferris, C.M., Abt, J.P., Tsai, Y.S., Myers, J.B., Fu, F.H., & Lephart, S.M. (2006). The effect of direction and reaction on the neuromuscular and biomechanical characteristics of the knee during tasks that simulate the noncontact anterior cruciate ligament injury mechanism. The American Journal of Sports Medicine, 34(1), 43–54. PubMed ID: 16210581 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shadmehr, R., & Mussa-Ivaldi, F.A. (1994). Adaptive representation of dynamics during learning of a motor task. Journal of Neuroscience, 14(5), 3208–3224. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, Z., & Seipel, J. (2015). Animals prefer leg stiffness values that may reduce the energetic cost of locomotion. Journal of Theoretical Biology, 364, 433–438. PubMed ID: 25234232 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, M.A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4(6), e179. PubMed ID: 16700627 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Song, S. (2009). Consciousness and the consolidation of motor learning. Behavioural Brain Research, 196(2), 180–186. PubMed ID: 18951924 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Valero-Cuevas, F.J., Venkadesan, M., & Todorov, E. (2009). Structured variability of muscle activations supports the minimal intervention principle of motor control. Journal of Neurophysiology, 102(1), 59–68. PubMed ID: 19369362 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Van den Bogert, A.J., & De Koning, J.J. (1996). On optimal filtering for inverse dynamics analysis. In Proceedings of the IXth Biennial Conference of the Canadian Society for Biomechanics (pp. 214–215). Vancouver: Simon Fraser University.

    • Search Google Scholar
    • Export Citation
  • Vanderah, T.W., & Gould, D.J. (2016). Nolte’s the human brain: An introduction to its functional anatomy (7th ed.). St. Louis, MO: Elsevier.

    • Search Google Scholar
    • Export Citation
  • Winter, D.A., & Eng, P. (1995). Kinetics: Our window into the goals and strategies of the central nervous system. Behavioural Brain Research, 67(2), 111–120. PubMed ID: 7779286 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zatsiorsky, V., Seluyanov, V., & Chugunova, G. (1990). Methods of determining mass-inertial characteristics of human body segments. In G.G Cherny&ibreve; (Ed.) Contemporary problems of biomechanics. Boca Raton, FL: CRC Press.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 24 24 24
Full Text Views 1 1 1
PDF Downloads 0 0 0