Positive Relations Between Vision and Posture in the Fixation Task Performed Upright

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

In an upright stance, individuals sway in unpredictable ways. Their eyes also move in unpredictable ways in fixation tasks. The objective of this study was to analyze visual functions, postural control, and cognitive involvement in stationary gaze. A total of 14 healthy young adults performed a fixation task and a free-viewing task (three trials per task, 45 s per trial). As expected, the results showed many (n = 32) significant positive Pearson correlation coefficients between the eye and center of pressure/body (head, neck, and lower back) movements in the fixation task. In the free-viewing task, the correlations were nonsignificant. Only 3 of the 32 significant correlations (9.4%) were significantly related to cognitive involvement (measured with a subjective questionnaire). These results indirectly strengthened the validity of the synergistic model of postural control.

The author is with SCALab, CNRS UMR 9193, University of Lille, Lille, France.

Bonnet (cedrick.bonnet@univ-lille.fr) is corresponding author.
Motor Control
Article Sections
References
  • AlahmariK.MarchettiG.F.SpartoP.J.FurmanJ.M. & WhitneyS.L. (2014). Estimating postural control with the balance rehabilitation unit: Measurement consistency, accuracy, validity, and comparison with dynamic posturography. Archives of Physical Medicine and Rehabilitation 956573. PubMed ID: 24076084 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AllumJ.H.J. & HoneggerF. (2013). Relation between head impulse tests, rotating chair tests, and stance and gait posturography after an acute unilateral peripheral vestibular deficit. Otology & Neurotology 34980989. PubMed ID: 23820798 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AllumJ.H.J. & HoneggerF. (2016). Recovery times of stance and gait balance control after an acute unilateral peripheral vestibular deficit. Journal of Vestibular Research 25219231. PubMed ID: 26890423 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • AytekinM. & RucciM. (2012). Motion parallax from microscopic head movements during visual fixation. Vision Research 70717. PubMed ID: 22902643 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BalohR.W.YingS.H. & JacobsonK.M. (2003). A longitudinal study of gait and balance dysfunction in normal older people. Archives of Neurology 60835839. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BonnetC.T. & BaudryS. (2016). A functional synergistic model to explain postural control during precise visual tasks. Gait & Posture 50120125. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BonnetC.T.Kinsella-ShawJ.M.FrankT.D.BubelaD.HarrisonS.J. & TurveyM.T. (2010). Deterministic and stochastic postural processes: Effects of task, environment, and age. Journal of Motor Behavior 42(1) 8597. PubMed ID: 20051351 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BonnetC.T. & SzaffarczykS. (2017). The stationary-gaze task should not be systematically used as the control task in postural control. Journal of Motor Behavior 49494504. PubMed ID: 28033477 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BonnetC.T.SzaffarczykS. & BaudryS. (2017). Functional synergy between postural and visual behaviours when performing a difficult visual task in upright stance. Cognitive Science 4016751693. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CegarraJ. & MorgadoN. (2009). Étude des propriétés de la version francophone du NASA-TLX. In B. CahourF. Anceaux & A. Giboins (Eds.) EPIQUE 2009: 5ème Colloque de Psychologie Ergonomique (pp. 233239). Nice, France.

    • Search Google Scholar
    • Export Citation
  • CharpiotA.TringaliS.IonescuE.Vital-DurandF. & Ferber-ViartC. (2010). Vestibulo-ocular reflex and balance maturation in healthy children aged from six to twelve years. Audiology & Neurotology 15203210. PubMed ID: 19893301 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ColagiorgioP.ColnaghiS.VersinoM. & RamatS. (2013). A new tool for investigating the functional testing of the VOR. Frontiers in Neurology 4165. doi: PubMed ID: 24298265

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CollinsJ.J. & De LucaC.J. (1995). The effects of visual input on open-loop and closed-loop postural control mechanisms. Experimental Brain Research 103151163. PubMed ID: 7615030 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EkkerM.S.JanssenS.SeppiK.PoeweW.de VriesN.M.TheelenT.BloemB.R. (2017). Ocular and visual disorders in Parkinson’s disease: Common but frequently overlooked. Parkinsonism and Related Disorders 40110. PubMed ID: 28284903 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • EngbertR. & KlieglR. (2004). Microsaccades keep the eyes’ balance during fixation. Psychological Science 15431436. PubMed ID: 15147499 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FalakiA.HuangX.LewisM.M. & LatashM.L. (2016). Impaired synergic control of posture in Parkinson’s patients without postural instability. Gait & Posture 4420915 PubMed ID: 27004660 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GiveansM.R.YoshidaK.BardyB.RileyM. & StoffregenT.A. (2011). Postural sway and the amplitude of horizontal eye movements. Ecological Psychology 23247266. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HartS.G. & StavelandL. (1988). Development of the NASA task load index (TLX): Results of empirical and theoretical research. In P.A. Hancock & N. Meshkati (Eds.) Human mental workload (pp. 139183). Amsterdam, The Netherlands: North-Holland.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HegemanJ.ShapkovaE.Y.HoneggerF. & AllumJ.H.J. (2007). Effect of age and height on trunk sway during stance and gait. Journal of Vestibular Research 177587. PubMed ID: 18413900

    • Search Google Scholar
    • Export Citation
  • HerdmanS.J.SchubertM.C.DasV.E. & TusaR.J. (2003). Recovery of dynamic visual acuity in unilateral vestibular hypofunctionArchives of Otolaryngology—Head & Neck Surgery 129819824. PubMed ID: 12925338 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HutererM. & CullenK.E. (2002). Vestibuloocular reflex dynamics during high-frequency and high-acceleration rotations of the head on body in rhesus monkey. Journal of Neurophysiology 881228. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KapteynT.S.BlesW.NjiokiktjienC.J.KoddeL.MassenC.H. & MolJ.M. (1983). Standardization in platform stabilometry being a part of posturography. Agressologie 24321326. PubMed ID: 6638321.

    • Search Google Scholar
    • Export Citation
  • LatashM.L.FerreiraS.S.WieczorekS.A. & DuarteM. (2002). Movement sway: Changes in postural sway during voluntary shifts of the center of pressure. Experimental Brain Research 150314324. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaurensJ.AwaiL.BockischC.J.HegermannS.van HedelH.J.A.DietzV. & StraumannD. (2010). Visual contribution to postural stability: Interaction between target fixation or tracking and static or dynamic large-field stimulus. Gait & Posture 313641. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LegrandA.MazarsK.D.LazzareschiJ.LemoineC.OlivierI.BarraJ. & BucciM.P. (2013). Differing effects of prosaccades and antisaccades on postural stability. Experimental Brain Research 227397405. PubMed ID: 23649967 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGarvieL.A.MacDougallH.G.HalmagyiG.M.BurgessA.M.WeberK.P. & CurthoysI.S. (2015). The video head impulse test (vHIT) of semicircular canal function–Age-dependent normative values of VOR gain in healthy subjects. Frontiers in Neurology 6154. doi: PubMed ID: 26217301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McIlroyW.E. & MakiB.E. (1997). Preferred placement of the feet during quiet stance: Development of a standardized foot placement for balance testing. Clinical Biomechanics 126670. PubMed ID: 11415674 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MitraS.KnightA. & MunnA. (2013). Divergent effects of cognitive load on quiet stance and task-linked postural coordination. Journal of Experimental Psychology: Human Perception and Performance 39323328. PubMed ID: 23127476.

    • Search Google Scholar
    • Export Citation
  • MossmanB.MossmanS.PurdieG. & SchneiderE. (2015). Age dependent normal horizontal VOR gain of head impulse test as measured with video-oculography. Journal of Otolaryngology– Head and Neck Surgery 4429. doi: PubMed ID: 30679030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Otero-MillanJ.TroncosoX.G.MacknikS.L.Serrano-PedrazaI. & Martinez-CondeS. (2008). Saccades and microsaccades during visual fixation, exploration, and search: Foundations for a common saccadic generator. Journal of Vision 8118. PubMed ID: 19146322 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RaymakersJ.A.SamsonM.M. & VerhaarH.J.J. (2005). The assessment of body sway and the choice of the stability parameter(s). Gait & Posture 214858. PubMed ID: 15536033 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RileyM.A. & TurveyM.T. (2002). Variability and determinism in motor behavior. Journal of Motor Behavior 3499125. PubMed ID: 12057885 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RougierP. & GarinM. (2007). Performing saccadic eye movements or blinking improves postural control. Motor Control 11213223. PubMed ID: 17715456 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchulmannD.L.GodfreyB. & FisherA.G. (1987). Effects of eye movements on dynamic equilibrium. Physical Therapy 6710541057. PubMed ID: 3602098 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SparksD.L. (2002). The brainstem control of saccadic eye movements. Nature Reviews Neuroscience 3952964. PubMed ID: 3920944 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • StoffregenT.A.BardyB.G.BonnetC.T.HoveP. & OullierO. (2007). Postural sway and the frequency of horizontal eye movements. Motor Control 1186102. PubMed ID: 17392569

    • Search Google Scholar
    • Export Citation
  • ThalerL.SchützA.C.GoodaleM.A. & GegenfurtnerK.R. (2013). What is the best fixation target? The effect of target shape on stability of fixational eye movements. Vision Research 763142. PubMed ID: 23099046 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ThomasN.M.BampourasT.M.DonovaT. & DewhurstS. (2016). Eye movements affect postural control in young and older females. Frontiers in Aging Neuroscience 8216. PubMed ID: 27695412 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 164 164 25
Full Text Views 6 6 1
PDF Downloads 2 2 0
Altmetric Badge
PubMed
Google Scholar