Sensorimotor Strategies in Individuals With Poststroke Hemiparesis When Standing Up Without Vision

in Motor Control
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $76.00

1 year subscription

USD $101.00

Student 2 year subscription

USD $144.00

2 year subscription

USD $188.00

This study investigated the sensorimotor strategies for dynamic balance control in individuals with stroke by restricting sensory input that might influence task accomplishment. Sit-to-stand movements were performed with restricted vision by participants with hemiparesis and healthy controls. The authors evaluated the variability in the position of participants’ center of mass and velocity, and the center-of-pressure position, in each orthogonal direction at the lift-off point. When vision was restricted, the variability in the mediolateral center-of-pressure position decreased significantly in individuals with hemiparesis, but not in healthy controls. Participants with hemiparesis adopted strategies that explicitly differed from those used by healthy individuals. Variability may be decreased in the direction that most requires accuracy. Individuals with hemiparesis have been reported to have asymmetrical balance deficits, and that meant they had to prioritize mediolateral motion control to prevent falling. This study suggests that individuals with hemiparesis adopt strategies appropriate to their characteristics.

Kuramatsu and Izumi are with the Department of Physical Medicine and Rehabilitation, Graduate School of Medicine, Tohoku University, Sendai, Japan. Izumi is also with the Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan. Yamamoto is with the Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya, Japan.

Kuramatsu (kuramatsuy@med.tohoku.ac.jp) is corresponding author.
Motor Control
Article Sections
References
  • AdamsR.W.GandeviaS.C. & SkuseN.S. (1990). The distribution of muscle weakness in upper motoneuron lesions affecting the lower limb. Brain 11314591476. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BaubyC.D. & KuoA.D. (2000). Active control of lateral balance in human walking. Journal of Biomechanics 3314331440. PubMed ID: 10940402 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • BergK.Wood-DauphineeS. & WilliamsJ.I. (1995). The balance scale: Reliability assessment with elderly residents and patients with an acute stroke. Scandinavian Journal of Rehabilitation Medicine 272736. PubMed ID: 7792547

    • Search Google Scholar
    • Export Citation
  • BernsteinN.A. (1967). The coordination and regulation of movements. Oxford, UK: Pergamon.

  • BernsteinN.A. (1996). On dexterity and its developments. In M.L. Latash & M.T. Turvey (Eds.) Dexterity and its development (pp. 3244). Mahwah, NJ: Lawrence Erlbaum Associates.

    • Search Google Scholar
    • Export Citation
  • BrunnstromS. (1966). Motor testing procedures in hemiplegia: Based on sequential recovery stages. Physical Therapy 46357375. PubMed ID: 5907254 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CanningC.G.AdaL. & O’DwyerN.J. (2000). Abnormal muscle activation characteristics associated with loss of dexterity after stroke. Journal of the Neurological Science 1764556. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • CarrJ.H. & ShephardR.B. (2003). Stroke rehabilitation: Guidelines for exercise and training to optimize motor skill. Edinburgh, UK: Butterworth Heinemann.

    • Search Google Scholar
    • Export Citation
  • ChinoN.SonodaS.DomenK.SaitohE. & KimuraA. (1994). Stroke impairment assessment set (SIAS): A new evaluation instrument for stroke patients. The Japanese Journal of Rehabilitation Medicine 31119125. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ChuV.W.HornbyT.G. & SchmitB.D. (2015). Perception of lower extremity loads in stroke survivors. Clinical Neurophysiology 126372381. PubMed ID: 25097091 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de KamD.KamphuisJ.F.WeerdesteynV. & GeurtsA.C.H. (2017). The effect of weight-bearing asymmetry on dynamic postural stability in people with chronic stroke. Gait & Posture 53510. PubMed ID: 28061401 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • FolsteinM.F.FolsteinS.E. & McHughP.R. (1975). “Mini-mental state.” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12189198. PubMed ID: 1202204 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GenthonN.RougierP.GissotA.S.FrogerJ.PelissierJ. & PerennouD. (2008). Contribution of each lower limb to upright standing in stroke patients. Stroke 3917931799. PubMed ID: 18369174 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GhoshA. & HaggardP. (2014). The spinal reflex cannot be perceptually separated from voluntary movements. The Journal of Physiology 592141152. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • GraciesJ.M. (2005). Pathophysiology of spastic paresis. II: Emergence of muscle overactivity. Muscle & Nerve 31552571. PubMed ID: 15714511 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • HorakF.B. & MacphersonJ.M. (1996). Postural orientation and equilibrium. In J. Shepherd & L. Rowell (Eds.) Exercise: Regulation and integration of multiple systems Handbook of physiology section 12 (pp. 255292). New York, NY: Oxford University Press.

    • Search Google Scholar
    • Export Citation
  • JekaJ.KiemalT.CreathR.HorakF. & PeterkaR. (2004). Controlling human upright posture: Velocity information is more accurate than position or acceleration. Journal of Neurophysiology 9223682379. PubMed ID: 15140910 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KajrolkarT. & BhattT. (2016). Falls-risk post-stroke: Examining contributions from paretic versus non paretic limbs to unexpected forward gait slips. Journal of Biomechanics 4927022708. PubMed ID: 27416778 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KaoP.DingwellJ.B.HigginsonJ.S. & Binder-MacleodS. (2014). Dynamic instability during post-stroke hemiparetic walking. Gait & Posture 40457463. PubMed ID: 24931112 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • KuramatsuY.MurakiT.OouchidaY.SekiguchiY. & IzumiS. (2012). Influence of constrained visual and somatic senses on controlling centre of mass during sit-to-stand. Gait & Posture 369094. PubMed ID: 22464270 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LatashM.L. (2002). Neurophysiological basis of movement. Champaign, IL: Human Kinetics.

  • LiepmanH.& KalmusE. (1900). Über eine Augenmaassstörung bei Hemianopikern. Berliner Klinische Wochenschrift 38838842.

  • LiuD. & TodorovE. (2007). Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. Journal of Neuroscience 2793549368. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MansfieldA.MochizukiG.InnessE.L. & McllroyW.E. (2012). Clinical correlates of between-limb synchronization of standing balance control and falls during inpatient stroke rehabilitation. Neurorehabilitation and Neural Repair 26627635. PubMed ID: 22275158 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MarigoldD.S. & EngJ.J. (2006). The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke. Gait & Posture 23249255. PubMed ID: 16399522 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MasaniK.PopovicM.R.NakazawaK.KouzakiM. & NozakiD. (2003). Importance of body sway velocity information in controlling ankle extensor activities during quiet stance. Journal of Neurophysiology 9037743782. PubMed ID: 12944529 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MullieY.& DuclosC. (2014). Role of proprioceptive information to control balance during gait in healthy and hemiparetic individuals. Gait & Posture 40610615. PubMed ID: 25127297 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NottC.R.NeptuneR.R. & KautzS.A. (2014). Relationships between frontal-plane angular momentum and clinical balance measures during post-stroke hemiparetic walking. Gait & Posture 39129134. PubMed ID: 23820449 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PinsaultN. & VuillermeN. (2008). Differential postural effects of plantar–flexor muscle fatigue under normal, altered and improved vestibular and neck somatosensory conditions. Experimental Brain Research 19199107. PubMed ID: 18663436 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReismanD.S.ScholzJ.P. & SchonerG. (2002). Coordination underlying the control of whole body momentum during sit-to-stand. Gait & Posture 154555. PubMed ID: 11809580 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ReismanD.S.WitykR.SilverK. & BastianA.J. (2007). Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain 13018611872. PubMed ID: 17405765 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • RoyG.NadeauS.GravelD.MalouinF.McFadyenB.J. & PiotteF. (2006). The effect of foot position and chair height on the asymmetry of vertical forces during sit-to-stand and stand-to-sit tasks in individuals with hemiparesis. Clinical Biomechanics 21585593. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchenkmanM.BergerR.A.RileyP.O.MannR.W. & HodgeW.A. (1990). Whole-body movements during rising to standing from sitting. Physical Therapy 70638648. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ScholzJ.P. & KelsoJ.A.S. (1989). A quantitative approach to understanding the formation and change of coordinated movement patterns. Journal of Motor Behavior 21122144. PubMed ID: 15132941 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ScholzJ.P.KelsoJ.A.S. & SchonerG. (1987) Nonequilibrium phase transition in coordinated biological motion: Critical slowing down and switching time. Physics Letter A 123390394. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ScholzJ.P. & SchonerG. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research 126289306. PubMed ID: 10382616 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • ScholzJ.P.ReismanD.S. & SchönerG. (2001) Effects of varying task constraints on solutions to joint coordinationin a sit-to-stand task. Experimental Brain Research 141485500. PubMed ID: 11810142. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • SchonerG. (1990). A dynamic theory of coordination of discrete movement. Biological Cybernetics 63257270. PubMed ID: 2207200 doi:

  • SchonerG. (1995). Recent development and problems in human movement science and their conceptual implications. Ecological Psychology 7291314. http://e.guigon.free.fr/rsc/article/Schoner95.pdf. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shumway-CookA. & WoollacottM.H. (2007). Motor control: Translating research into clinical practice (3rd ed.). Philadelphia, PA: Lippincott Williams & Wilkins.

    • Search Google Scholar
    • Export Citation
  • ThedonT.MandrickK.FoissacM.MottetD. & PerreyS. (2011). Degraded postural performance after muscle fatigue can be compensated by skin stimulation. Gait & Posture 33686689. PubMed ID: 21454076 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TodorovE. (2004). Optimality principles in sensorimotor control. Nature Neuroscience 7907915. PubMed ID: 15332089 doi:

  • TodorovE. & JordanM.I. (2002). Optimal feedback control as a theory of motor coordination. Nature Neuroscience 512261235. PubMed ID: 12404008 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TsengS. & MortonS. (2010). Impaired interlimb coordination of voluntary leg movements in poststroke hemiparesis. Journal of Neurophysiology 104248257. PubMed ID: 20463199 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • TsujiT.LiuM.SonodaS.DomenK. & ChinoN. (2000). The stroke impairment assessment set: Its internal consistency and predictive validity. Archives of Physical Medicine and Rehabilitation 81863868. PubMed ID: 10895996 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • VistamehrA.KautzS.A.BowdenM.G. & NeptuneR.R. (2016). Correlations between measures of dynamic balance in individuals with post-stroke hemiparesis. Journal of Biomechanics 49396400. PubMed ID: 26795124 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WalkerE.R.HyngstromA.S. & SchmitB.D. (2016). Influence of visual feedback on dynamic balance control in chronic stroke survivors. Journal of Biomechanics 49698703. PubMed ID: 26916509 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WestlakeK.P.WuY. & CulhamE.G. (2007). Sensory-specific balance training in older adults: Effect on position, movement, and velocity sense at the ankle. Physical Therapy 87560568. PubMed ID: 17405803 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • WinterD.A. (1990). Biomechanics and motor control of human movement. New York, NY: John Wiley & Sons.

  • WurdemanS.R.HubenN.B. & StergiouN. (2012). Variability of gait is dependent on direction of progression: Implications for active control. Journal of Biomechanics 45653659. PubMed ID: 22245103 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 180 180 48
Full Text Views 8 8 5
PDF Downloads 7 7 4
Altmetric Badge
PubMed
Google Scholar