Antipointing Reaches Do Not Adhere to Width-Based Manipulations of Fitts’ (1954) Equation

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

Reaches with overlapping stimulus-response spatial relations (propointing) adhere to speed–accuracy relations as defined by Paul Fitts’ index of difficulty equation (IDFitts: in bits of information). This movement principle is attributed to response mediation via the “fast” visuomotor networks of the dorsal visual pathway. It is, however, unclear whether the executive demands of dissociating stimulus-response spatial relations by reaching mirror-symmetrical to a target (antipointing) elicits similar adherence to Fitts’ equation. Here, pro- and antipointing responses were directed to a constant target amplitude with varying target widths to provide IDFitts values of 3.0, 3.5, 4.3, and 6.3 bits. Propointing movement times linearly increased with IDFitts—a result attributed to visually based trajectory corrections. In contrast, antipointing movement times, deceleration times, and endpoint precision did not adhere to Fitts’ equation. These results indicate that antipointing renders a “slow” and offline mode of control mediated by the visuoperceptual networks of the ventral visual pathway.

Pecora and Heath are with the School of Kinesiology, University of Western Ontario, London, Ontario, Canada. Tremblay is with the Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.

Heath (mheath2@uwo.ca) is corresponding author.
  • Adam, J.J., Mol, R., Pratt, J., & Fischer, M.H. (2006). Moving farther but faster: An exception to Fitts’s law. Psychological Science, 17, 794–798. PubMed ID: 16984297 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ariely, D. (2001). Seeing sets: Representation by statistical properties. Psychological Science, 12, 157–162. PubMed ID: 11340926 doi:

  • Brainard, D.H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433–436. PubMed ID: 9176952 doi:

  • Bremmer, F., Kubischik, M., Hoffmann, K.P., & Krekelberg, B. (2009). Neural dynamics of saccadic suppression. Journal of Neuroscience, 29, 12374–12383. PubMed ID: 19812313 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, D.P., Hargreaves, E.L., & Goodale, M.A. (1996). Reaching to ipsilateral or contralateral targets: Within-hemisphere visuomotor processing cannot explain hemispatial differences in motor control. Experimental Brain Research, 112, 496–504. PubMed ID: 9007551 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carmer, S.G., & Seif, R.D. (1963). Calculation of orthogonal coefficients when treatments are unequally replicated and/or unequally spaced. Agronomy Journal, 55, 387–389 . doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavina-Pratesi, C., Kuhn, G., Ietswaart, M., & Milner, A.D. (2011). The magic grasp: Motor expertise in deception. PLoS One, 6, e16568. PubMed ID: 21347416 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chong, S.C., & Treisman, A. (2005). Statistical processing: Computing the average size in perceptual groups. Vision Research, 45, 891–900. PubMed ID: 15644229 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chua, R., Carson, R.G., Goodman, D., & Elliott, D. (1992). Asymmetries in the spatial localization of transformed targets. Brain and Cognition, 20, 227–235. PubMed ID: 1449755 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Connolly, J.D., Goodale, M.A., Desouza, J.F., Menon, R.S., & Vilis, T. (2000). A comparison of frontoparietal fMRI activation during anti-saccades and anti-pointing. Journal Neurophysiology, 84, 1645–1655. PubMed ID: 10980034 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davarpanah Jazi, S.D., & Heath, M. (2017). The spatial relations between stimulus and response determine an absolute visuo-haptic calibration in pantomime-grasping. Brain and Cognition, 114, 29–39. PubMed ID: 28346879 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Day, B.L., & Lyon, I.N. (2000). Voluntary modification of automatic arm movements evoked by motion of a visual target. Experimental Brain Research, 130, 159–168. PubMed ID: 10672469 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Grosbois, J., Heath, M., & Tremblay, L. (2015). Augmented feedback influences upper limb reaching movement times but does not explain violations of Fitts’ law. Frontiers in Psychology, 6, 800. PubMed ID: 26136703 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., Helsen, W.F., & Chua, R. (2001). A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychological Bulletin, 127, 342–357. PubMed ID: 11393300 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, P.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47, 381–391. PubMed ID: 13174710 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, P.M., & Peterson, J.R. (1964). Information capacity of discrete motor responses. Journal of Experimental Psychology, 67, 103–112. PubMed ID: 14114905 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganel, T., Chajut, E., & Algom, D. (2008). Visual coding for action violates fundamental psychophysical principles. Current Biology, 18, R599–R601. PubMed ID: 18644333 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gillen, C., & Heath, M. (2014). Perceptual averaging governs antisaccade endpoint bias. Experimental Brain Research, 232, 3201–3210. PubMed ID: 24935477 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazebrook, C.M., Kiernan, D., Welsh, T.N., & Tremblay, L. (2015). How one breaks Fitts’s Law and gets away with it: Moving further and faster involves more efficient online control. Human Movement Science, 39, 163–176. PubMed ID: 25485765 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodale, M.A. (2011). Transforming vision into action. Vision Res, 51, 1567–1587. PubMed ID: 20691202 doi:

  • Goodale, M.A., Jakobson, L.S., & Keillor, J.M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32, 1159–1178. PubMed ID: 7845558 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M. (2005). Role of limb and target vision in the online control of memory-guided reaches. Motor Control, 9(3), 281–311.

  • Heath, M., Bell, J., Holroyd, C.B., & Krigolson, O. (2012). Electroencephalographic evidence of vector inversion in antipointing. Experimental Brain Research, 221, 19–26. PubMed ID: 22710619 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M., Gillen, C., & Weiler, J. (2015). The antisaccade task: Vector inversion contributes to a statistical summary representation of target eccentricities. Journal of Vision, 15(4), 4. PubMed ID: 26053143 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M., Maraj, A., Gradkowski, A., & Binsted, G. (2009). Anti-pointing is mediated by a perceptual bias of target location in left and right visual space. Experimental Brain Research, 192, 275–286. PubMed ID: 18982320 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M., Maraj, A., Maddigan, M., & Binsted, G. (2009). The antipointing task: Vector inversion is supported by a perceptual estimate of visual space. Journal of Motor Behavior, 41, 383–392. PubMed ID: 19460747 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M., Samani, A., Tremblay, L., & Elliott, D. (2016). Fitts’ theorem in oculomotor control: Dissociable movement times for amplitude and width manipulations. Journal of Motor Behavior, 48, 1–11.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M., Weiler, J., Marriott, K.A., Elliott, D., & Binsted, G. (2011). Revisiting Fitts and Peterson (1964): Width and amplitude manipulations to the reaching environment elicit dissociable movement times. Canadian Journal of Experimental Psychology, 65, 259–268. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, Y., & Goodale, M.A. (2000). Grasping after a delay shifts size-scaling from absolute to relative metrics. Journal of Cognitive Neuroscience, 12, 856–868. PubMed ID: 11054927 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • James, T.W., Culham, J., Humphrey, G.K., Milner, A.D., & Goodale, M.A. (2003). Ventral occipital lesions impair object recognition but not object-directed grasping: An fMRI study. Brain, 126, 2463–2475. PubMed ID: 14506065 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, H., Van Beers, R.J., & Haggard, P. (2002). Action and awareness in pointing tasks. Experimental Brain Research, 146, 451–459. PubMed ID: 12355273 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Juras, G., Slomka, K., & Latash, M. (2009). Violations of Fitts’ law in a ballistic task. Journal of Motor Behavior, 41, 525–528 . doi:

  • Khan, M.A., Elliot, D., Coull, J., Chua, R., & Lyons, J. (2002). Optimal control strategies under different feedback schedules: Kinematic evidence. Journal of Motor Behavior, 34, 45–57. PubMed ID: 11880249 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klapp, S.T. (1975). Feedback versus motor programming in the control of aimed movements. Journal of Experimental Psychology: Human Perception and Performance, 104, 161–169. PubMed ID: 1194867

    • Search Google Scholar
    • Export Citation
  • Langolf, G.D., Chaffin, D.B., & Foulke, J.A. (1976). An investigation of Fitts’ law using a wide range of movement amplitudes. Journal of Motor Behavior, 8, 113–128. PubMed ID: 23965141 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • MacKenzie, C.L., Marteniuk, C., Dugas, C., Liske, D., & Eickmeir, B. (1987). Three-dimensional movement trajectories in Fitts’ task: Implications for motor control. The Quarterly Journal of Experimental Psychology, 39, 629–647 . doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maraj, A., & Heath, M. (2010). Antipointing: Perception-based visual information renders an offline mode of control. Experimental Brain Research, 202, 55–64. PubMed ID: 20012599 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merigan, W.H., & Maunsell, J.H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369–402. PubMed ID: 8460898 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, D.E., Abrams, R.A., Kornblum, S., Wright, C.E., & Smith, J.E. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95, 340–370. PubMed ID: 3406245 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moon, S.Y., Barton, J.J., Mikulski, S., Polli, F.E., Cain, M.S., Vangel, M., . . . Manoach, D.S. (2007). Where left becomes right: A magnetoencephalographic study of sensorimotor transformation for antisaccades. NeuroImage, 36, 1313–1323. PubMed ID: 17537647 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munoz, D.P., & Everling, S. (2004). Look away: The anti-saccade task and the voluntary control of eye movement. Nature Reviews Neuroscience, 5, 218–228. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Munro, H., Plumb, M.S., Wilson, A.D., Williams, J.H., & Mon-Williams, M. (2007). The effect of distance on reaction time in aiming movements. Experimental Brain Research, 183, 249–257. PubMed ID: 17639361 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Neely, K.A., Heath, M., & Binsted, G. (2008). Egocentric and allocentric visual cues influence the specification of movement distance and direction. Journal of Motor Behavior, 40, 203–213. PubMed ID: 18477534 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plamondon, R., & Alimi, A.M. (1997). Speed/accuracy trade-offs in target-directed movements. The Behavioral and Brain Sciences, 20, 279–303. PubMed ID: 10096999 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Plewan, T., Weidner, R., Eickhoff, S.B., & Fink, G.R. (2012). Ventral and dorsal stream interactions during the perception of the Müller-Lyer illusion: Evidence derived from fMRI and dynamic causal modeling. Journal of Cognitive Neuroscience, 24, 2015–2029. PubMed ID: 22721374 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richards, J.E. (2003). Cortical sources of event-related potentials in the prosaccade and antisaccade task. Psychophysiology, 40, 878–894. PubMed ID: 14986841 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossetti, Y., Revol, P., McIntosh, R., Pisella, L., Rode, G., Danckert, J., . . . Milner, A.D. (2005). Visually guided reaching: Bilateral posterior parietal lesions cause a switch from fast visuomotor to slow cognitive control. Neuropsychologia, 43, 162–177. PubMed ID: 15707902 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossit, S., Malhotra, P., Muir, K., Reeves, I., Duncan, G., & Harvey, M. (2011). The role of right temporal lobe structures in off-line action: Evidence from lesion-behavior mapping in stroke patients. Cerebral Cortex, 21, 2751–2761. PubMed ID: 21508302 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rushworth, G., & Denny-Brown, D. (1959). The two components of the grasp reflex after ablation of frontal cortex in monkeys. Journal of Neurology, Neurosurgery, and Psychiatry, 22, 91–98. PubMed ID: 13655096 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R.A., Zelaznik, H., Hawkins, B., Frank, J.S., & Quinn, J.T. (1979). Motor-output variability: A theory for the accuracy of rapid motor acts. Psychological Review, 47, 415–451. PubMed ID: 504536 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Donkelaar, P. (1997). Eye–hand interactions during goal-directed pointing movements. Neuroreport, 8, 2139–2142. PubMed ID: 9243599 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webb, B., Humphreys, D., & Heath, M. (2018). Oculomotor executive dysfunction during the early and later stages of sport-related concussion recovery. Journal of Neurotrauma, 35, 1874–1881. PubMed ID: 30074868 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welford, A.T., Norris, A.H., & Shock, N.W. (1969). Speed and accuracy of movement and their changes with age. Acta Psychol (Amst), 30, 3–15 . doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwood, D.A., Chapman, C.D., & Roy, E.A. (2000). Pantomimed actions may be controlled by the ventral visual stream. Experimental Brain Research, 130, 545–548. PubMed ID: 10717797 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, J., Yang, J., & Honda, T. (2010). Fitts’ law holds for pointing movements under conditions of restricted visual feedback. Human Movement Science, 29, 882–892. PubMed ID: 20659774 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, M., & Barash, S. (2000). Neuronal switching of sensorimotor transformations for antisaccades. Nature, 408, 971–975. PubMed ID: 11140683 doi:

All Time Past Year Past 30 Days
Abstract Views 44 44 44
Full Text Views 4 4 4
PDF Downloads 3 3 3