The Influence of Recent Actions and Anticipated Actions on the Stability of Finger Forces During a Tracking Task

in Motor Control
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $76.00

1 year subscription

USD  $101.00

Student 2 year subscription

USD  $144.00

2 year subscription

USD  $188.00

The authors examined how the stability of the current total isometric force (FT) produced by four fingers is influenced by previous and expected voluntary changes in FT. The authors employed the synergy index obtained from the across-trial uncontrolled manifold analysis to quantify the stability of FT. The authors compared two tasks with similar histories of FT changes; one in which participants expected changes in FT in the future, and one in which they expected no changes in FT. The stability of FT was lower in the former task, indicating the existence of a novel type of anticipatory synergy adjustment. Disparate histories of FT changes yield inconsistent changes in stability, driven by individual differences in the covariation in the finger forces that leave FT invariant. Future research should focus on exploring these individual differences to better understand how previous and expected behavior changes influence the stability of the current motor behavior.

Tillman and Ambike are with the Department of Health & Kinesiology; Ambike is also with the Center on Aging and the Life Course; Purdue University, West Lafayette, IN, USA.

Ambike (sambike@purdue.edu) is corresponding author.
  • Acasio, J., Wu, M., Fey, N.P., & Gordon, K.E. (2017). Stability-maneuverability trade-offs during lateral steps. Gait & Posture, 52, 171177. PubMed ID: 27915220 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • de Freitas, S.M., Scholz, J.P., & Stehman, A.J. (2007). Effect of motor planning on use of motor abundance. Neuroscience Letters, 417(1), 6671. PubMed ID: 17331643 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M.A., Kram, R., & Lehman, S. (2000). How animals move: An integrative view. Science, 288(5463), 100106. PubMed ID: 10753108 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Falaki, A., Huang, X., Lewis, M.M., & Latash, M.L. (2017). Dopaminergic modulation of multi-muscle synergies in postural tasks performed by patients with Parkinson’s disease. Journal of Electromyography and Kinesiology, 33, 2026. PubMed ID: 28110044 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freitas, S.M.S.F., & Scholz, J.P. (2009). Does hand dominance affect the use of motor abundance when reaching to uncertain targets? Human Movement Science, 28(2), 169190. PubMed ID: 19230996 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gorniak, S.L., Duarte, M., & Latash, M.L. (2008). Do synergies improve accuracy? A study of speed-accuracy trade-offs during finger force production. Motor Control, 12(2), 151172. PubMed ID: 18483449

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gottlieb, G.L., Corcos, D.M., & Agarwal, G.C. (1989). Organizing principles for single-joint movements. I. A speed-insensitive strategy. Journal of Neurophysiology, 62(2), 342357. PubMed ID: 2769334 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hasan, Z. (2005). The human motor control system’s response to mechanical perturbation: Should it, can it, and does it ensure stability? Journal of Motor Behavior, 37(6), 484493. PubMed ID: 16280319 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.J., & Ahmed, A.A. (2011). Tradeoff between stability and maneuverability during whole-body movements. PLoS One, 6(7), e21815. PubMed ID: 21779336 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelso, J., Scholz, J.P., & Schöner, G. (1986). Nonequilibrium phase transitions in coordinated biological motion: Critical fluctuations. Physics Letters A, 118(6), 279284.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kiefer, A.W., & Myer, G.D. (2015). Training the antifragile athlete: A preliminary analysis of neuromuscular training effects on muscle activation dynamics. Nonlinear Dynamics, Psychology, and Life Sciences, 19(4), 489510.

    • Search Google Scholar
    • Export Citation
  • Kim, S.W., Shim, J.K., Zatsiorsky, V.M., & Latash, M.L. (2006). Anticipatory adjustments of multi-finger synergies in preparation for self-triggered perturbations. Experimental Brain Research, 174(4), 604612. PubMed ID: 16724179 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klous, M., Mikulic, P., & Latash, M.L. (2011). Two aspects of feedforward postural control: Anticipatory postural adjustments and anticipatory synergy adjustments. Journal of Neurophysiology, 105(5), 22752288. PubMed ID: 21389305 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kostyukov, A.I. (1998). Muscle hysteresis and movement control: A theoretical study. Neuroscience, 83(1), 303320. PubMed ID: 9466419 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krishnan, V., Aruin, A.S., & Latash, M.L. (2011). Two stages and three components of the postural preparation to action. Experimental Brain Research, 212(1), 4763. PubMed ID: 21537967 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2010). Stages in learning motor synergies: A view based on the equilibrium-point hypothesis. Human Movement Science, 29(5), 642654. PubMed ID: 20060610 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L. (2018). Muscle coactivation: Definitions, mechanisms, and functions. Journal of Neurophysiology, 120(1), 88104. PubMed ID: 29589812 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., & Huang, X. (2015). Neural control of movement stability: Lessons from studies of neurological patients. Neuroscience, 301, 3948. PubMed ID: 26047732 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Scholz, J.P., & Schoner, G. (2002). Motor control strategies revealed in the structure of motor variability. Exercise and Sport Sciences Reviews, 30(1), 2631. PubMed ID: 11800496

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latash, M.L., Yarrow, K., & Rothwell, J.C. (2003). Changes in finger coordination and responses to single pulse TMS of motor cortex during practice of a multifinger force production task. Experimental Brain Research, 151(1), 6071. PubMed ID: 12740728 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olafsdottir, H., Yoshida, N., Zatsiorsky, V.M., & Latash, M.L. (2005). Anticipatory covariation of finger forces during self-paced and reaction time force production. Neuroscience Letters, 381(1–2), 9296. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olafsdottir, H., Yoshida, N., Zatsiorsky, V.M., & Latash, M.L. (2007). Elderly show decreased adjustments of motor synergies in preparation to action. Clinical Biomechanics, 22(1), 4451. PubMed ID: 17046125 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Olafsdottir, H.B., Kim, S.W., Zatsiorsky, V.M., & Latash, M.L. (2008). Anticipatory synergy adjustments in preparation to self-triggered perturbations in elderly individuals. Journal of Applied Biomechanics, 24(2), 175179. PubMed ID: 18579910

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., Wu, Y.H., Lewis, M.M., Huang, X., & Latash, M.L. (2012). Changes in multifinger interaction and coordination in Parkinson’s disease. Journal of Neurophysiology, 108(3), 915924. PubMed ID: 22552184 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Park, J., & Xu, D. (2017). Multi-finger interaction and synergies in finger flexion and extension force production. Frontiers in Human Neuroscience, 11, 318. PubMed ID: 28674489 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Piscitelli, D., Falaki, A., Solnik, S., & Latash, M.L. (2017). Anticipatory postural adjustments and anticipatory synergy adjustments: Preparing to a postural perturbation with predictable and unpredictable direction. Experimental Brain Research, 235(3), 713730. PubMed ID: 27866261 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riccio, G.E. (1993). Information in movement variability about quantitative dynamics of posture and orientation. In K.M. Newell & D.M. Corcos (Eds.), Variability and motor control (pp. 317357). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Riccio, G.E., & Stoffregen, T.A. (1988). Affordances as constraints on the control of stance. Human Movement Science, 7, 265300.

  • Riley, M.A., & Turvey, M.T. (2002). Variability of determinism in motor behavior. Journal of Motor Behavior, 34(2), 99125. PubMed ID: 12057885 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Robert, T., Bennett, B.C., Russell, S.D., Zirker, C.A., & Abel, M.F. (2009). Angular momentum synergies during walking. Experimental Brain Research, 197(2), 185197. PubMed ID: 19578841 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Kelso, J.A. (1990). Intentional switching between patterns of bimanual coordination depends on the intrinsic dynamics of the patterns. Journal of Motor Behavior, 22(1), 98124. PubMed ID: 15111283 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scholz, J.P., & Schoner, G. (1999). The uncontrolled manifold concept: Identifying control variables for a functional task. Experimental Brain Research, 126(3), 289306. PubMed ID: 10382616

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Olafsdottir, H., Zatsiorsky, V.M., & Latash, M.L. (2005). The emergence and disappearance of multi-digit synergies during force-production tasks. Experimental Brain Research, 164(2), 260270. PubMed ID: 15770477 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shim, J.K., Park, J., Zatsiorsky, V.M., & Latash, M.L. (2006). Adjustments of prehension synergies in response to self-triggered and experimenter-triggered load and torque perturbations. Experimental Brain Research, 175(4), 641653. PubMed ID: 16804720 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Singh, P., Jana, S., Ghosal, A., & Murthy, A. (2016). Exploration of joint redundancy but not task space variability facilitates supervised motor learning. Proceedings of the National Academy of Sciences of the United States of America, 113(50), 1441414419. PubMed ID: 27911808 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., Park, J., Zatsiorsky, V.M., & Latash, M.L. (2011). Prehension synergies during smooth changes of the external torque. Experimental Brain Research, 213(4), 493506. PubMed ID: 21796540 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, Y., Zatsiorsky, V.M., & Latash, M.L. (2011). Prehension of half-full and half-empty glasses: time and history effects on multi-digit coordination. Experimental Brain Research, 209(4), 571585. PubMed ID: 21331525 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suzuki, M., & Yamazaki, Y. (2005). Velocity-based planning of rapid elbow movements expands the control scheme of the equilibrium point hypothesis. Journal of Computational Neuroscience, 18(2), 131149. PubMed ID: 15714266 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tillman, M., & Ambike, S. (2018a). Cue-induced changes in the stability of finger force-production tasks revealed by the uncontrolled manifold analysis. Journal of Neurophysiology, 119(1), 2132. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tillman, M., & Ambike, S. (2018b). Expectation of movement generates contrasting changes in multifinger synergies in young and older adults. Experimental Brain Research, 236(10), 27652780. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Togo, S., & Imamizu, H. (2016). Anticipatory synergy adjustments reflect individual performance of feedforward force control. Neuroscience Letters, 632, 192198. PubMed ID: 27546821 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Emmerik, R.E., & van Wegen, E.E. (2000). On variability and stability in human movement. Journal of Applied Biomechanics, 16, 394406.

  • Vaz, D.V., Pinto, V.A., Junior, R.R.S., Mattos, D.J.S., & Mitra, S. (2019). Coordination in adults with neurological impairment—A systematic review of uncontrolled manifold studies. Gait & Posture, 69, 6678. PubMed ID: 30677709 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., Asaka, T., Zatsiorsky, V.M., & Latash, M.L. (2006). Muscle synergies during voluntary body sway: Combining across-trials and within-a-trial analyses. Experimental Brain Research, 174(4), 679693. PubMed ID: 16710681 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, T., Wu, Y.H., Bartsch, A., Cuadra, C., Zatsiorsky, V.M., & Latash, M.L. (2013). Anticipatory synergy adjustments: Preparing a quick action in an unknown direction. Experimental Brain Research, 226(4), 565573. PubMed ID: 23494385 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 91 91 20
Full Text Views 1 1 0
PDF Downloads 1 1 0