Velocity Performance Feedback During Ballistic Training: Which Is the Optimal Frequency of Feedback Administration?

in Motor Control
View More View Less
  • 1 University of Granada
  • 2 Catholic University of the Most Holy Concepción
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

This study explored the impact of different frequencies of knowledge of results (KR) on velocity performance during ballistic training. Fifteen males completed four identical sessions (three sets of six repetitions at 30% one-repetition maximum during the countermovement jump and bench press throw) with the only difference of the KR condition provided: no feedback, velocity feedback after the first half of repetitions of each set (HalfKR), velocity feedback immediately after each repetition (ImKR), and feedback of the average velocity of each set (AvgKR). When compared with the control condition, the ImKR reported the highest velocity performance (1.9–5.3%), followed by the HalfKR (1.3–3.6%) and AvgKR (0.7–4.3%). These results support the verbal provision of velocity performance feedback after every repetition to induce acute improvements in velocity performance.

Pérez-Castilla, Miras-Moreno, Rojas, and García-Ramos are with the Department of Physical Education and Sport, Faculty of Sport Sciences, University of Granada, Granada, Spain. Jiménez-Alonso and Cepero are with the Department of Teaching Body Language, Faculty of Educational Sciences, University of Granada, Granada, Spain. García-Ramos is also with the Department of Sports Sciences and Physical Conditioning, Faculty of Education, CIEDE, Catholic University of the Most Holy Concepción, Concepción, Chile.

Pérez-Castilla (alexperez@ugr.es) is corresponding author.
  • Argus, C.K., Gill, N.D., Keogh, J.W.L., & Hopkins, W.G. (2011). Acute effects of verbal feedback on upper-body performance in elite athletes. Journal of Strength and Conditioning Research, 25(12), 32823287. PubMed ID: 22076083 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Banyard, H.G., Nosaka, K., Sato, K., & Haff, G. (2017). Validity of various methods for determining velocity, force and power in the back squat. International Journal of Sports Physiology and Performance, 12(9), 11701176. PubMed ID: 28182500 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • De Sá, E.C., Ricarte Medeiros, A., Santana Ferreira, A., García Ramos, A., Janicijevic, D., & Boullosa, D. (2019). Validity of the iLOAD® app for resistance training monitoring. PeerJ, 7, e7372. PubMed ID: 31410306 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Ramos, A., Haff, G.G., Jiménez-Reyes, P., Pérez-Castilla, A. (2018). Assessment of upper-body ballistic performance through the bench press throw exercise. Journal of Strength and Conditioning Research, 32(10), 27012707. PubMed ID: 29847530 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • García-Ramos, A., Pestaña-Melero, F.L., Pérez-Castilla, A., Rojas, F.J., & Haff, G.G. (2018). Differences in the load-velocity profile between 4 bench press variants. International Journal of Sport Physiology and Performance, 13(3), 326331. PubMed ID: 28714752 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • González-Badillo, J.J., Marques, M.C., & Sánchez-Medina, L. (2011). The importance of movement velocity as a measure to control resistance training intensity. Journal of Human Kinetics, 29, 1519. PubMed ID: 23487504 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hopkins, W.G., Marshall, S.W., Batterham, A.M., & Hanin, J. (2009). Progressive statistics for studies in sports medicine and exercise science. Medicine & Science in Sports & Exercise, 41(1), 313. PubMed ID: 19092709 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jiménez-Alonso, A., García-Ramos, A., Cepero, M., Miras-Moreno, S., Rojas, F.J., & Pérez-Castilla, A. (2020). Effect of augmented feedback on velocity performance during strength-oriented and power-oriented resistance training sessions. Journal of Strength and Conditioning Research. Online ahead of print. PubMed ID: 32639379 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Keller, M., Lauber, B., Gehring, D., Leukel, C., & Taube, W. (2014). Jump performance and augmented feedback: Immediate benefits and long-term training effects. Human Movement Science, 36, 177189. PubMed ID: 24875045 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knight, C.A., & Kamen, G. (2001). Adaptations in muscular activation of the knee extensor muscles with strength training in young and older adults. Journal of Electromyography and Kinesiology, 11(6), 405412. PubMed ID: 11738953 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, J., Ivey, P., & Sayers, S. (2015). Velocity-based training in football. Strength & Conditioning Journal, 37(6), 5257. doi:

  • Mononen, K., Viitasalo, J.T., Konttinen, N., & Era, P. (2003). The effects of augmented kinematic feedback on motor skill learning in rifle shooting. Journal of Sports Sciences, 21(10), 867876. PubMed ID: 14620030 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagata, A., Doma, K., Yamashita, D., Hasegawa, H., & Mori, S. (2018). The effect of augmented feedback type and frequency on velocity-based training-induced adaptation and retention. Journal of Strength and Conditioning Research. Online ahead of print. PubMed ID: 29461412 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Nevin, J. (2019). Autoregulated resistance training: Does velocity-based training represent the future? Strength and Conditioning Journal, 41(4), 3439. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Niewiadomski, W., Laskowska, D., Gąsiorowska, A., Cybulski, G., Strasz, A., & Langfort, J. (2008). Determination and prediction of one repetition maximum (1RM): Safety considerations. Journal of Human Kinetics, 19(1), 109120. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Castilla, A., Boullosa, D., & García-Ramos, A. (2020). Reliability and validity of the iLOAD application for monitoring the mean set velocity during the back squat and bench press exercises performed against different loads. Journal of Strength and Conditioning Research. Online ahead of print.

    • Search Google Scholar
    • Export Citation
  • Pérez-Castilla, A., García-Ramos, A., Padial, P., Morales-Artacho, A.J., & Feriche, B. (2020). Load-velocity relationship in variations of the half-squat exercise. Journal of Strength and Conditioning Research, 34(4), 10241031. PubMed ID: 28885389 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pérez-Castilla, A., Jiménez-Reyes, P., Haff, G.G., & García-Ramos, A. (2019). Assessment of the loaded squat jump and countermovement jump exercises with a linear velocity transducer: Which velocity variable provides the highest reliability? Sports Biomechanics. Online ahead of print. PubMed ID: 30644796 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pérez-Castilla, A., Piepoli, A., Delgado-García, G., Garrido-Blanca, G., & García-Ramos, A. (2019). Reliability and concurrent validity of seven commercially available devices for the assessment of movement velocity at different intensities during the bench press. Journal of Strength and Conditioning Research, 33(5), 12581265. PubMed ID: 31034462 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Randell, A.D., Cronin, J.B., Keogh, J.W., Gill, N.D., & Pedersen, M.C. (2011). Effect of instantaneous performance feedback during 6 weeks of velocity-based resistance training on sport-specific performance tests. Journal of Strength and Conditioning Research, 25(1), 8793. PubMed ID: 21157389 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soriano, M.A., Jiménez-Reyes, P., Rhea, M.R., & Marín, P.J. (2015). The optimal load for maximal power production during lower-body resistance exercises: A meta-analysis. Sports Medicine, 45(8), 1191205. PubMed ID: 26063470 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Soriano, MA., Suchomel, T.J., & Marin, P.J. (2017). The optimal load for maximal power production during upper-body resistance exercises: A meta-analysis. Sports Medicine, 47(4), 757768. PubMed ID: 27699699 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weakley, J., Till, K., Sampson, J., Banyard, H., Leduc, C., Wilson, K., Roe, G., & Jones, B. (2019). The effects of augmented feedback on sprint, jump, and strength adaptations in rugby union players after a 4-week training program. International Journal of Sports Physiology and Performance, 14(9), 12051211. PubMed ID: 30840517 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weakley, J., Wilson, K., Till, K., Banyard, H., Dyson, J., Phibbs, P., Read, D., & Jones, B. (2018). Show me, tell me, encourage me: The effect of different forms of feedback on resistance training performance. Journal of Strength and Conditioning Research. Online ahead of print. PubMed ID: 30289870 doi:

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • Weakley, J., Wilson, K., Till, K., Read, D., Scantlebury, S., Sawczuk, T., Neenan, C., & Jones, B. (2019). Visual kinematic feedback enhances velocity, power, motivation and competitiveness in adolescent female athletes. Journal of Australian Strength and Conditioning, 27(3), 18357644.

    • Search Google Scholar
    • Export Citation
  • Weakley, J.J.S., Wilson, K.M., Till, K., Read, D.B., Darrall-Jones, J., Roe, G.A.B., Phibbs, P.J., & Jones, B. (2019). Visual feedback attenuates mean concentric barbell velocity loss and improves motivation, competitiveness, and perceived workload in male adolescent athletes. Journal of Strength and Conditioning Research, 33(9), 24202425. PubMed ID: 28704314 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winchester, J.B., McBride, J.M., Maher, M.A., Mikat, R.P., Allen, B.K., Kline, D.E., & Mcguigan, M.R. (2008). Eight weeks of ballistic exercise improves power independently of changes in strength and muscle fiber type expression. Journal of Strength and Conditioning Research, 22(6), 17281734. PubMed ID: 18815571 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winstein, C.J., & Schmidt, R.A. (1990). Reduced frequency of knowledge of results enhances motor skill learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 16(4), 677691. PubMed ID: 21833281 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulf, G., Dufek, J.S., Lozano, L., & Pettigrew, C. (2010). Increased jump height and reduced EMG activity with an external focus. Human Movement Science, 29(3), 440448. PubMed ID: 20409600 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wulf, G., Shea, C.H., & Matschiner, S. (1998). Frequent feedback enhances complex motor skill learning. Journal of Motor Behavior, 30(2), 180192. PubMed ID: 20037033 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 289 289 81
Full Text Views 11 11 4
PDF Downloads 7 7 0