Dissociating the Influence of Perceptual Biases and Contextual Artifacts Within Target Configurations During the Planning and Control of Visually Guided Action

in Motor Control
View More View Less
  • 1 Liverpool Hope University
  • 2 Ouachita Baptist University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

The failure of perceptual illusions to elicit corresponding biases within movement supports the view of two visual pathways separately contributing to perception and action. However, several alternative findings may contest this overarching framework. The present study aimed to examine the influence of perceptual illusions within the planning and control of aiming. To achieve this, we manipulated and measured the planning/control phases by respectively perturbing the target illusion (relative size-contrast illusion; Ebbinghaus/Titchener circles) following movement onset and detecting the spatiotemporal characteristics of the movement trajectory. The perceptual bias that was indicated by the perceived target size estimates failed to correspondingly manifest within the effective target size. While movement time (specifically, time after peak velocity) was affected by the target configuration, this outcome was not consistent with the direction of the perceptual illusions. These findings advocate an influence of the surrounding contextual information (e.g., annuli) on movement control that is independent of the direction predicted by the illusion.

Roberts, Wakefield, and Simmonds are with the Psychology, Action and Learning of Movement (PALM) Laboratory, School of Health Sciences, Liverpool Hope University, Liverpool, United Kingdom. Roberts is also with the Brain & Behaviour Laboratory, Research Institute of Sport & Exercise Sciences (RISES), Liverpool John Moores University, Liverpool, United Kingdom. Gerber is with the Department of Biology, Ouachita Baptist University, Arkadelphia, AR, USA.

Roberts (J.W.Roberts@ljmu.ac.uk) is corresponding author.
  • Adam, J.J., Hommel, B., & Umiltà, C. (2003). Preparing for perception and action (I): The role of grouping in the response-cuing paradigm. Cognitive Psychology, 46(3), 302358. PubMed ID: 12694696 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adam, J.J., Mol, R., Pratt, J., & Fischer, M.H. (2006). Moving farther but faster: An exception to Fitts’s law. Psychological Science, 17(9), 794798. PubMed ID: 16984297 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aglioti, S., DeSouza, J.F., & Goodale, M.A. (1995). Size-contrast illusions deceive the eye but not the hand. Current Biology, 5(6), 679685. PubMed ID: 7552179 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alphonsa, S., Dai, B., Benham-Deal, T., & Zhu, Q. (2016). Combined visual illusion effects on the perceived index of difficulty and movement outcomes in discrete and continuous Fitts’ tapping. Psychological Research, 80(1), 5568. PubMed ID: 25535018 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alphonsa, S., Dai, B., Benham-Deal, T., & Zhu, Q. (2017). Interaction of perception and action in discrete and continuous rapid aiming task. Journal of Motor Behavior, 47(5), 524532. PubMed ID: 28033484 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bruno, N. (2001). When does action resist visual illusions? Trends in Cognitive Sciences, 5(9), 379382. PubMed ID: 11520701 doi:

  • Bruno, N., & Franz, V.H. (2009). When is grasping affected by the Müller-Lyer illusion? A quantitative review. Neuropsychologia, 47(6), 14211433. PubMed ID: 19059422 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carey, D.P. (2010). Visual selective attention and action. In D. Elliott& M.A. Khan (Eds.), Vision and goal-directed movement: Neurobehavioral perspectives (pp. 265277). Champaign, IL: Human Kinetics.

    • Search Google Scholar
    • Export Citation
  • Coren, S. (1986). An efferent component in the visual perception of direction and extent. Psychological Review, 93(4), 391410. PubMed ID: 3774917 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cressman, E.K., Franks, I.M., Enns, J.T., & Chua, R. (2006). No automatic pilot for visually guided aiming based on colour. Experimental Brain Research, 171(2), 174183. PubMed ID: 16307249 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., Hansen, S., Grierson, L.E.M, Lyons, J., Bennett, S.J., & Hayes, S.J. (2010). Goal-directed aiming: Two components but multiple processes. Psychological Bulletin, 136(6), 10231044. PubMed ID: 20822209 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., Helsen, W.F., & Chua, R. (2001). A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychological Bulletin, 127(3), 342357. PubMed ID: 11393300 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elliott, D., & Lee, T.D. (1995). The role of target information on manual-aiming bias. Psychological Research, 58, 29. doi:

  • Fischer, M.H. (2001). How sensitive is hand transport to illusory context effects? Experimental Brain Research, 136(2), 224230. PubMed ID: 11206284 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, P.M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of Experimental Psychology, 47(6), 381391. PubMed ID: 13174710 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fitts, P.M., & Peterson, J.R. (1964). Information capacity of discrete motor responses. Journal of Experimental Psychology, 67, 103112. PubMed ID: 14114905 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Franz, V.H. (2001). Action does not resist visual illusions. Trends in Cognitive Sciences, 5(11), 457459. PubMed ID: 11684465 doi:

  • Franz, V.H., Hesse, C., & Kollarth, S. (2009). Visual illusions, delayed grasping, and memory: No shift from dorsal to ventral control. Neuropsychologia, 47(6), 15181531. PubMed ID: 18834894 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazebrook, C.M., Dhillon, V.P., Keetch, K.M., Lyons, J., Amazeen, E., Weeks, D.J., & Elliott, D. (2005). Perception-action and the Müller-Lyer illusion: Amplitude or endpoint bias? Experimental Brain Research, 160(1), 7178. PubMed ID: 15300347 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazebrook, C.M., Kiernan, D., Welsh, T.N., & Tremblay, L. (2015). How one breaks Fitts’s Law and gets away with it: Moving further and faster involves more efficient online control. Human Movement Science, 39, 163176. PubMed ID: 25485765 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glover, S. (2004). Separate visual representations in the planning and control of action. Behavioral and Brain Sciences, 27(1), 324. PubMed ID: 15481943 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glover, S.R., & Dixon, P. (2001). Dynamic illusion effects in a reaching task: Evidence for separate visual representations in the planning and control of reaching. Journal of Experimental Psychology: Human Perception and Performance, 27(3), 560572. PubMed ID: 11424646 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glover, S.R., & Dixon, P. (2002). Dynamic effects of the Ebbinghaus illusion in grasping: Support for a planning/control model of action. Perception & Psychophysics, 64(2), 266278. PubMed ID: 12013380 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodale, M.A. (2014). How (and why) the visual control of action differs from visual perception. Proceedings of the Royal Society B: Biological Sciences, 281(1785), 20140337. PubMed ID: 24789899 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goodale, M.A., Meenan, J.P., Bülthoff, H.H., Nicolle, D.A., Murphy, K.J., & Racicot, C.I. (1994). Separate neural pathways for the visual analysis of object shape in perception and prehension. Current Biology, 4(7), 604610. PubMed ID: 7953534 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grierson, L.E., & Elliott, D. (2009). Goal-directed aiming and the relative contribution of two online control processes. American Journal of Psychology, 122(3), 309324. PubMed ID: 19827701 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haffenden, A.M., & Goodale, M.A. (1998). The effect of pictorial illusion on prehension and perception. Journal of Cognitive Neuroscience, 10(1), 122136. PubMed ID: 9526087 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haffenden, A.M., Schiff, K.C., & Goodale, M.A. (2001). The dissociation between perception and action in the Ebbinghaus illusion: Non-illusory effects of pictorial cues on grasp. Current Biology, 11(3), 177181. PubMed ID: 11231152 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Handlovsky, I., Hansen, S., Lee, T.D., & Elliott, D. (2004). The Ebbinghaus illusion affects on-line movement control. Neuroscience Letters, 366(3), 308311. PubMed ID: 15288440 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M., Hodges, N.J., Chua, R., & Elliott, D. (1998). On-line control of rapid aiming movements: Unexpected target perturbations and movement kinematics. Canadian Journal of Experimental Psychology/Revue canadienne de psychologie expérimentale, 52(4), 163173.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heath, M., Rival, C., & Neely, K. (2006). Visual feedback schedules influence visuomotor resistance to the Müller-Lyer figures. Experimental Brain Research, 168(3), 348356. PubMed ID: 16175361 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knol, H., Huys, R., Sarrazin, J.C., Spiegler, A., & Jirsa, V.K. (2017). Ebbinghaus figures that deceive the eye do not necessarily deceive the hand. Scientific Reports, 7(1), 3111. PubMed ID: 28596601 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kopiske, K.K., Bruno, N., Hesse, C., Schenk, T, & Franz, V.H. (2016). The functional subdivision of the visual brain: Is there a real illusion effect on action? A multi-lab replication study. Cortex, 79, 130152. PubMed ID: 27156056 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livingstone, M., & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240(4853), 740749. PubMed ID: 3283936 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marotta, J.J., DeSouza, J.F.X., Haffenden, A.M., & Goodale, M.A. (1998). Does a monocularly presented size-contrast illusion influence grip aperture? Neuropsychologia, 36(6), 491497. PubMed ID: 9705058 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meegan, D.V., Glazebrook, C.M., Dhillon, V.P., Tremblay, L., Welsh, T.N., & Elliott, D. (2004). The Müller-Lyer illusion affects the planning and control of manual aiming movements. Experimental Brain Research, 155(1), 3747. PubMed ID: 15064883 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendoza, J.E., Elliott, D., Meegan, D.V., Lyons, J.L., & Welsh, T.N. (2006). The effect of the Müller-Lyer illusion on the planning and control of manual aiming movements. Journal of Experimental Psychology: Human Perception and Performance, 32(2), 413422. PubMed ID: 16634679 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mendoza, J.E., Hansen, S., Glazebrook, C.M., Keetch, KM., & Elliott, D. (2005). Visual illusions affect both movement planning and on-line control: A multiple cue position on bias and goal-directed action. Human Movement Science, 24(5–6), 760773. PubMed ID: 16223538 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merigan, W.H., Byrne, C.E., & Maunsell, J.H. (1991). Does primate motion perception depend on the magnocellular pathway? Journal of Neuroscience, 11(11), 34223429. PubMed ID: 1941091 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meyer, D.E., Abrams, R.A., Kornblum, S., Wright, C.E., & Smith, K.J.E. (1988). Optimality in human motor performance: Ideal control of rapid aimed movements. Psychological Review, 95(3), 340370. PubMed ID: 3406245 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miles, J.D., & Proctor, R.W. (2015). Attention is captured by distractors that uniquely correspond to controlled objects: An analysis of movement trajectories. Attention, Perception, & Psychophysics, 77(3), 819829. PubMed ID: 25465396 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milner, A.D. (2017). How do the two visual streams interact with each other? Experimental Brain Research, 235(5), 12971308. PubMed ID: 28255843 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Milner, A.D., & Goodale, M.A. (1995). The visual brain in action. Oxford, UK: Oxford University Press.

  • Mishkin, M., Ungerleider, L.G., & Mack, K.A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences, 6, 414417. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10(4), 437442. PubMed ID: 9176953 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pratt, J., Adam, J.J., Fischer, M.H. (2007). Visual layout modulates Fitts’s law: The importance of first and last positions. Psychonomic Bulletin & Review, 14(2), 350355. PubMed ID: 17694925 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, J.W., Lyons, J., Garcia, D.B.L., Burgess, R., & Elliott, D. (2017). Gunslinger effect and Müller-Lyer illusion: Examining early visual information processing for late limb-target control. Motor Control, 21(3), 284298. PubMed ID: 27218800 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roberts, J.W., Welsh, T.N., & Wakefield, C.J. (2019). Examining the equivalence between imagery and execution—Do imagined and executed movements code relative environmental features? Behavioural Brain Research, 370, 111951. PubMed ID: 31108114 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schenk, T., & Hesse, C. (2018). Do we have distinct systems for immediate and delayed actions? A selective review on the role of visual memory in action. Cortex, 98, 228248. PubMed ID: 28619233 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmidt, R.A., Zelaznik, H.N., Hawkins, B., Frank, J.S., & Quinn, J.T. (1979). Motor output variability: A theory for the accuracy of rapid motor acts. Psychological Review, 47(5), 415451. PubMed ID: 504536 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Searleman, A., Porac, C., Dafoe, C., & Hetzel, B. (2005). Altering Mueller-Lyer illusion magnitude using figural additions at the wing-shaft intersections. American Journal of Psychology, 118(4), 619637. PubMed ID: 16402749

    • Search Google Scholar
    • Export Citation
  • Skewes, J.C., Roepstorff, A., & Frith, C.D. (2011). How do illusions constrain goal-directed movement: Perceptual and visuomotor influences on speed/accuracy trade-off. Experimental Brain Research, 209(2), 247255. PubMed ID: 21267551 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slifkin, A.B., & Eder, J.R. (2017). Degree of target utilization influences the location of movement endpoint distributions. Acta Psychologica, 174, 89100. PubMed ID: 28214432 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeets, J.B.J., & Brenner, E. (1995). Perception and action are based on the same visual information: Distinction between position and velocity. Journal of Experimental Psychology: Human Perception and Performance, 21(1), 1931. PubMed ID: 7707030 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeets, J.B.J., Kleijn, E., van der Meijden, M., & Brenner, E. (2020). Why some size illusions affect grip aperture. Experimental Brain Research, 238(4), 969979. PubMed ID: 32185404 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smeets, J.B.J., van der Kooij, K., & Brenner, E. (2019). A review of grasping as the movements of digits in space. Journal of Neurophysiology, 122(4),15781597. PubMed ID: 31339802 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Beers, R.J. (2009). Motor learning is optimally tuned to the properties of motor noise. Neuron, 63(3), 406417. PubMed ID: 19679079 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Donkelaar, P. (1999). Pointing movements are affected by size-contrast illusions. Experimental Brain Research, 125(4), 517520. PubMed ID: 10323299 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welsh, T.N. (2011). The relationship between attentional capture and deviations in movement trajectories in a selective reaching task. Acta Psychologica, 137(3), 300308. PubMed ID: 21507363 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Welsh, T.N., Elliott, D., & Weeks, D. (1999). Hand deviations toward distractors. Experimental Brain Research, 127(2), 207212. PubMed ID: 10442412 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwood, D.A., & Goodale, M.A. (2003). Perceptual illusion and the real-time control of action. Spatial Vision, 16(3–4), 243254. PubMed ID: 12858950 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westwood, D.A., & Goodale, M.A. (2011). Converging evidence for diverging pathways: Neuropsychology and psychophysics tell the same story. Vision Research, 51(8), 804811. PubMed ID: 20951156 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Woodworth, R.S. (1899). The accuracy of voluntary movement. The Psychological Review: Monograph Supplements, 3(3), 1114.

  • World Medical Association (2013). World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA, 310(20), 21912194. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 173 173 56
Full Text Views 4 4 2
PDF Downloads 2 2 1