Bimanual Coordination in a Whole-Body Dynamic Balance Sport, Slacklining: A Comparison of Novice and Expert

in Motor Control
View More View Less
  • 1 Kanagawa University
  • 2 Tokyo Metropolitan University
  • 3 Tokyo Metropolitan Tobu Medical Center
  • 4 Waseda University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $77.00

1 year online subscription

USD  $103.00

Student 2 year online subscription

USD  $147.00

2 year online subscription

USD  $195.00

As previous studies have suggested that bimanual coordination is important for slacklining, the authors questioned whether this important skill plays a role in the performance of a fundamental task of slacklining. To address this question, the authors compared single-leg standing on the slackline between novices and experts in terms of bimanual coordination dynamics within a dynamical systems framework using relative phase and recurrence quantification analysis measures. Five novices and five experts participated in the experiment. Participants were required to perform single-leg standing on a slackline. To collect motion data while slacklining, the authors used a 3D motion capture system and obtained time series data on the wrist position of both hands. The authors compared bimanual coordination dynamics between novices and experts. Although this preliminary study was limited in its sample size, the results suggest that experts tend to show a more antiphase coordination pattern than novices do and that they can more sustainably coordinate their hands compared with novices in terms of temporal structure in diagonal-related recurrence measures (i.e., maxline, mean line, and percentage determinism).

Kodama is with the Faculty of Economics, Kanagawa University, Yokohama-shi, Kanagawa, Japan; and the University Education Center, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan. Yamagiwa is with the Tokyo Metropolitan Tobu Medical Center, Koto-ku, Tokyo, Japan. Yasuda is with the Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan.

Kodama (kkodama@kanagawa-u.ac.jp) is corresponding author.
  • Ashburn, H. (2013). How to Slackline!: A comprehensive guide to rigging and walking techniques for tricklines, longlines, and highlines. Falcon Guides, MO: Falcon Pr Pub Co.

    • Search Google Scholar
    • Export Citation
  • Bernstein, N.A. (1967). The Co-ordination and regulation of movements. Oxford: Pergamon Press Ltd.

  • Coco, M.I., & Dale, R. (2014). Cross-recurrence quantification analysis of categorical and continuous time series: An R package. Frontiers in Psychology, 5, 510. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Davids, K., Glazier, P., Araújo, D., & Bartlett, R. (2003). Movement systems as dynamical systems: The functional role of variability and its implications for sports medicine. Sports Medicine, 33(4), 245260. PubMed ID: 12688825 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donath, L., Roth, R., Zahner, L., & Faude, O. (2016). Slackline training (balancing over narrow nylon ribbons) and balance performance: A meta-analytical review. Sports Medicine, 47, 112. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Donath, L., & Zahner, L. (2013). Effects of slackline training on balance, jump performance & muscle activity in young children. Journal of Sports Medicine, 34, 10931098. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eckmann, J.-P., Kamphorst, S.O., & Ruelle, D. (1987). Recurrence plots of dynamical systems. Europhysics Letters, 4(9), 973977. doi:

  • Gabel, C.P., Osborne, J., & Burkett, B. (2015). The influence of ‘Slacklining’ on quadriceps rehabilitation, activation and intensity. Journal of Science and Medicine in Sport, 18(1), 6266. PubMed ID: 24373899 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haken, H. (1978). Synergetics: An introduction: Nonequilibrium phase transitions and self-organization in physics, chemistry and biology. Berlin Heidelberg, Germany: Springer-Verlag.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haken, H., Kelso, J.A.S., & Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51(5), 347356. PubMed ID: 3978150 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelso, J.A.S. (1995). Dynamic patterns: The self-organization of brain and behavior. Cambridge, MA: MIT Press.

  • Kelso, J.A.S., Delcolle, J.D., & Schöner, G.H. (1990). Action-perception as a pattern formation process. Attention and Performance, 7(13), 139169.

    • Search Google Scholar
    • Export Citation
  • Kodama, K., Kikuchi, Y., & Yamagiwa, H. (2016). Relation between bimanual coordination and whole-body balancing on a slackline. Paper presented at the 38th annual conference of the cognitive science society (pp. 794799).

    • Search Google Scholar
    • Export Citation
  • Kodama, K., Kikuchi, Y., & Yamagiwa, H. (2017). Whole-body coordination skill for dynamic balancing on a slackline. In M. Otake, S. Kurahashi, Y. Ota, K. Satoh, & D. Bekki (Eds.), New frontiers in artificial intelligence (pp. 528546). Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lafe, C.W., Pacheco, M.M., & Newell, K.M. (2016). Bimanual coordination and the intermittency of visual information in isometric force tracking. Experimental Brain Research, 234(7), 20252034. PubMed ID: 26960740 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamb, P.F., & Stöckl, M. (2014). On the use of continuous relative phase: Review of current approaches and outline for a new standard. Clinical Biomechanics, 29(5), 484493. PubMed ID: 24726779 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marwan, N. (2017). Cross recurrence plot toolbox for MATLAB® (5.22(R32.1)). Retrieved from http://tocsy.pik-potsdam.de/CRPtoolbox/

  • Mildren, R.L., Zaback, M., Adkin, A.L., Bent, L.R., & Frank, J.S. (2018). Learning to balance on a slackline: Development of coordinated multi-joint synergies. Scandinavian Journal of Medicine and Science in Sports, 28(9), 19962008. PubMed ID: 29727499 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montull, L., Vázquez, P., Rocas, L., Hristovski, R., & Balagué, N. (2020). Flow as an Embodied State. Informed Awareness of Slackline Walking. Frontiers in Psychology, 10, 111. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nagymáté, G., & Kiss, R.M. (2018). Application of OptiTrack motion capture systems in human movement analysis. Recent Innovations in Mechatronics, 5(1), 19. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Newell, K.M. (1986). Constraints on the development of coordination. In M.G. Wade& H.T.A. Whiting (Eds.), Motor development in children: Aspects of coordination and control (pp. 341360). Dordrecht, Netherlands: Springer.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pellecchia, G.L., Shockley, K.D., & Turvey, M.T. (2005). Concurrent cognitive task modulates coordination dynamics. Cognitive Science, 29(4), 531557. PubMed ID: 21702784 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pikovsky, A., Rosenblum, M., & Kurths, J. (Jürgen). (2001). Synchronization: A universal concept in nonlinear sciences. Cambridge, England: Cambridge University Press.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Richardson, M.J., Schmidt, R.C., & Kay, B.A. (2007). Distinguishing the noise and attractor strength of coordinated limb movements using recurrence analysis. Biological Cybernetics, 96(1), 5978. PubMed ID: 16953458 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Riley, M.A., Balasubramaniam, R., & Turvey, M.. (1999). Recurrence quantification analysis of postural fluctuations. Gait and Posture, 9(1), 6578. PubMed ID: 10575072 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rutz, D.G., & Benninger, D.H. (2020). Physical therapy for freezing of gait and gait impairments in parkinson disease: A systematic review. PM&R, 12(11), 11401156.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, L., Fernández-Río, J., Fernández-García, B., Jakobsen, M.D., González-Gómez, L., & Suman, O.E. (2016). Effects of slackline training on postural control, jump performance, and myoelectrical activity in female basketball players. Journal of Strength and Conditioning Research, 30(3), 653664. PubMed ID: 26349046 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schärli, A.M., Keller, M., Lorenzetti, S., Murer, K., & van de Langenberg, R. (2013). Balancing on a slackline: 8-year-olds vs. adults. Frontiers in Psychology, 4, 111. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shockley, K.D. (2005). Cross recurrence quantification of interpersonal postural activity. In M. Riley & G. Van Orden (Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 142177). Arlington, VA: National Science Foundation.

    • Search Google Scholar
    • Export Citation
  • Shumway-Cook, A., Woollacott, M.H. (2013). Motor control: translating research into clinical practice. Lippincott Williams & Wilkins.

  • Stein, K., & Mombaur, K. (2019). Performance indicators for stability of slackline balancing. Paper presented at the IEEE-RAS 19th international conference on humanoid robots (humanoids) (pp. 469476).

    • Search Google Scholar
    • Export Citation
  • Thomas, M., & Kalicinski, M. (2016). The effects of slackline balance training on postural control in older adults. Journal of Aging and Physical Activity, 24(3), 393398. PubMed ID: 26583953 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turvey, M.T. (1990). Coordination. American Psychologist, 45(8), 938953.

  • Van Orden, G.C., & Riley, M.A. (Eds.). (2005). Tutorials in contemporary nonlinear methods for the behavioral sciences. Arlington, VA: National Science Foundation.

    • Search Google Scholar
    • Export Citation
  • Volery, S., Singh, N., de Bruin, E.D., List, R., Jaeggi, M.M., Mattli Baur, B., & Lorenzetti, S. (2017). Traditional balance and slackline training are associated with task-specific adaptations as assessed with sensorimotor tests. European Journal of Sport Science, 17(7), 838846. PubMed ID: 28488937 doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Webber, C.L., & Zbilut, J.P. (2005). Recurrence quantification analysis of nonlinear dynamical systems. In M. Riley & G. Van Orden (Eds.), Tutorials in contemporary nonlinear methods for the behavioral sciences (pp. 2694). Arlington, VA: National Science Foundation.

    • Search Google Scholar
    • Export Citation
  • Zbilut, J.P., Giuliani, A., & Webber, C.L. (1998). Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Physics Letters A, 246(1–2), 122128. doi:

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 139 139 123
Full Text Views 2 2 2
PDF Downloads 0 0 0