Dual-Task Interference Slows Down Proprioception

in Motor Control

Click name to view affiliation

Linjing JiangDepartment of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Linjing Jiang in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-2623-0010
,
Satoshi KasaharaDepartment of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Satoshi Kasahara in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-2764-1927*
,
Tomoya IshidaDepartment of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Tomoya Ishida in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0003-0174-7416
,
Yuting WeiDepartment of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Yuting Wei in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0001-7869-7037
,
Ami ChibaDepartment of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Ami Chiba in
Current site
Google Scholar
PubMed
Close
,
Mina SamukawaDepartment of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Mina Samukawa in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-4663-598X
, and
Harukazu TohyamaDepartment of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan

Search for other papers by Harukazu Tohyama in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-0317-8088
Restricted access

It is well-known that multitasking impairs the performance of one or both of the concomitant ongoing tasks. Previous studies have mainly focused on how a secondary task can compromise visual or auditory information processing. However, despite dual tasking being critical to motor performance, the effects of dual-task performance on proprioceptive information processing have not been studied yet. The purpose of the present study was, therefore, to investigate whether sensorimotor task performance would be affected by the dual task and if so, in which phase of the sensorimotor task performance would this negative effect occur. The kinematic variables of passive and active knee movements elicited by the leg drop test were analyzed. Thirteen young adults participated in the study. The dual task consisted of performing serial subtractions. The results showed that the dual task increased both the reaction time to counteract passive knee–joint movements in the leg drop test and the threshold to detect those movements. The dual task did not affect the speed and time during the active knee movement and the absolute angle error between the final and the target knee angles. Furthermore, the results showed that the time to complete the sensorimotor task was prolonged in dual tasking. Our findings suggest that dual tasking reduces motor performance due to slowing down proprioceptive information processing without affecting movement execution.

  • Collapse
  • Expand
  • Abdallat, R., Sharouf, F., Button, K., & Al-Amri, M. (2020). Dual-task effects on performance of gait and balance in people with knee pain: A systematic scoping review. Journal of Clinical Medicine, 9(5), 1554. https://doi.org/10.3390/jcm9051554

    • Search Google Scholar
    • Export Citation
  • Baert, I., Lluch, E., Struyf, T., Peeters, G., Van Oosterwijck, S., Tuynman, J., Rufai, S., & Struyf, F. (2018). Inter- and intrarater reliability of two proprioception tests using clinical applicable measurement tools in subjects with and without knee osteoarthritis. Musculoskeletal Science & Practice, 35, 105109. https://doi.org/10.1016/j.msksp.2017.11.011

    • Search Google Scholar
    • Export Citation
  • Bayot, M., Dujardin, K., Dissaux, L., Tard, C., Defebvre, L., Bonnet, C.T., Allart, E., Allali, G., & Delval, A. (2020). Can dual-task paradigms predict falls better than single task? – A systematic literature review. Clinical Neurophysiology, 50(6), 401440. https://doi.org/10.1016/j.neucli.2020.10.008

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Bertucco, M., & Cesari, P. (2010). Does movement planning follow Fitts’ law? Scaling anticipatory postural adjustments with movement speed and accuracy. Neuroscience, 171(1), 205213. https://doi.org/10.1016/j.neuroscience.2010.08.023

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Biometrics. (2002). Goniometer and torsiometer operating manual. Biometrics Ltd.

  • Bishnoi, A., & Hernandez, M.E. (2021). Dual task walking costs in older adults with mild cognitive impairment: A systematic review and meta-analysis. Aging & Mental Health, 25(9), 16181629. https://doi.org/10.1080/13607863.2020.1802576

    • Search Google Scholar
    • Export Citation
  • Brisson, B., & Jolicoeur, P. (2007). Cross-modal multitasking processing deficits prior to the central bottleneck revealed by event-related potentials. Neuropsychologia, 45(13), 30383053. https://doi.org/10.1016/j.neuropsychologia.2007.05.022

    • Search Google Scholar
    • Export Citation
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge. https://doi.org/10.4324/9780203771587

  • Cohen, J. (2013). Statistical power analysis for the behavioral sciences. Routledge. https://doi.org/10.4324/9780203771587

  • Deblock-Bellamy, A., Lamontagne, A., & Blanchette, A.K. (2020). Cognitive-locomotor dual-task interference in stroke survivors and the influence of the tasks: A systematic review. Frontiers in Neurology, 11, 882. https://doi.org/10.3389/fneur.2020.00882

    • PubMed
    • Search Google Scholar
    • Export Citation
  • De Jong R. (1993). Multiple bottlenecks in overlapping task performance. Journal of Experimental Psychology. Human Perception and Performance, 19(5), 965980. https://doi.org/10.1037//0096-1523.19.5.965

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. https://doi.org/10.3758/bf03193146

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Fritz, N.E., Cheek, F.M., & Nichols-Larsen, D.S. (2015). Motor-cognitive dual-task training in persons with neurologic disorders: A systematic review. Journal of Neurologic Physical Therapy, 39(3), 142153. https://doi.org/10.1097/NPT.0000000000000090

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Goble, D.J., Mousigian, M.A., & Brown, S.H. (2012). Compromised encoding of proprioceptively determined joint angles in older adults: The role of working memory and attentional load. Experimental Brain Research, 216(1), 3540. https://doi.org/10.1007/s00221-011-2904-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Gold, J.I., & Shadlen, M.N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535574. https://doi.org/10.1146/annurev.neuro.29.051605.113038

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Granit R. (1972). Constant errors in the execution and appreciation of movement. Brain: A Journal of Neurology, 95(4), 451460. https://doi.org/10.1093/brain/95.4.649

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Guerreiro, M.J., Adam, J.J., Van Gerven, P.W. (2014). Aging and response interference across sensory modalities. Psychonomic Bulletin & Review, 21(3), 83642. https://doi.org/10.3758/s13423-013-0554-5

    • Search Google Scholar
    • Export Citation
  • Hospod, V., Aimonetti, J.M., Roll, J.P., & Ribot-Ciscar, E. (2007). Changes in human muscle spindle sensitivity during a proprioceptive attention task. The Journal of Neuroscience, 27(19), 51725178. https://doi.org/10.1523/JNEUROSCI.0572-07.2007

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Humes, L.E., & Young, L.A. (2016). Sensory-cognitive interactions in older adults. Ear and Hearing, 37(Suppl. 1), 52S61S. https://doi.org/10.1097/AUD.0000000000000303

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ifft, P.J., Lebedev, M.A., & Nicolelis, M.A. (2011). Cortical correlates of Fitts’ law. Frontiers in Integrative Neuroscience, 5, 85. https://doi.org/10.3389/fnint.2011.00085

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kasahara, S., & Saito, H. (2021). Mechanisms of postural control in older adults based on surface electromyography data. Human Movement Science, 78, 102803. https://doi.org/10.1016/j.humov.2021.102803

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kawato, M., & Wolpert, D. (1998). Internal models for motor control. Novartis Foundation Symposium, 218, 291307. https://doi.org/10.1002/9780470515563.ch16

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Kim, H.D., & Brunt, D. (2007). The effect of a dual-task on obstacle crossing in healthy elderly and young adults. Archives of Physical Medicine and Rehabilitation, 88(10), 13091313. https://doi.org/10.1016/j.apmr.2007.07.001

    • Search Google Scholar
    • Export Citation
  • Laufer, Y., Hocherman, S., & Dickstein, R. (2001). Accuracy of reproducing hand position when using active compared with passive movement. Physiotherapy Research International: The Journal for Researchers and Clinicians in Physical Therapy, 6(2), 6575. https://doi.org/10.1002/pri.215

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lee, M.D., & Wagenmakers, E.J. (2014). Bayesian cognitive modeling: A practical course. Cambridge University Press.

  • Leisman, G., Moustafa, A.A., & Shafir, T. (2016). Thinking, walking, talking: Integratory motor and cognitive brain function. Frontiers in Public Health, 4, 94. https://doi.org/10.3389/fpubh.2016.00094

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Lund, H., Juul-Kristensen, B., Hansen, K., Christensen, R., Christensen, H., Danneskiold-Samsoe, B., & Bliddal, H. (2008). Movement detection impaired in patients with knee osteoarthritis compared to healthy controls: A cross-sectional case-control study. Journal of Musculoskeletal & Neuronal Interactions, 8(4), 391400.

    • Search Google Scholar
    • Export Citation
  • Lundin-Olsson, L., Nyberg, L., & Gustafson, Y. (1997). “Stops walking when talking” as a predictor of falls in elderly people. Lancet, 349(9052), 617. https://doi.org/10.1016/S0140-6736(97)24009-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Madhavan, S., & Shields, R.K. (2005). Influence of age on dynamic position sense: Evidence using a sequential movement task. Experimental Brain Research, 164(1), 1828. https://doi.org/10.1007/s00221-004-2208-3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Magrini, M.A., Thiele, R.M., Colquhoun, R.J., Barrera-Curiel, A., Blackstock, T.S., DeFreitas, J.M. (2018). The reactive leg drop: A simple and novel sensory-motor assessment to predict fall risk in older individuals. Journal of Neurophysiology, 119(4), 15561561. https://doi.org/10.1152/jn.00713.2017

    • Search Google Scholar
    • Export Citation
  • Naderi, A., Rezvani, M.H., & Degens, H. (2020). Foam rolling and muscle and joint proprioception after exercise-induced muscle damage. Journal of Athletic Training, 55(1), 5864. https://doi.org/10.4085/1062-6050-459-18

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ness, B.M., Zimney, K., Schweinle, W.E., & Cleland, J.A. (2020). Dual-task assessment implications for anterior cruciate ligament injury: A systematic review. International Journal of Sports Physical Therapy, 15(6), 840855. https://doi.org/10.26603/ijspt20200840

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Ouattas, A., Wellsandt, E., Hunt, N.H., Boese, C.K., & Knarr, B.A. (2019). Comparing single and multi-joint methods to detect knee joint proprioception deficits post primary unilateral total knee arthroplasty. Clinical Biomechanics, 68, 197204. https://doi.org/10.1016/j.clinbiomech.2019.06.006

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Parker, P., Brown, M.A., Smear, M.C., & Niell, C.M. (2020). Movement-related signals in sensory areas: Roles in natural behavior. Trends in Neurosciences, 43(8), 581595. https://doi.org/10.1016/j.tins.2020.05.005

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Pashler, H. (1994). Dual-task interference in simple tasks: Data and theory. Psychological Bulletin, 116(2), 220244. https://doi.org/10.1037/0033-2909.116.2.220

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Proske, U., & Gandevia, S.C. (2018) Kinesthetic senses. Comprehensive Physiology, 8(3), 11571183. https://doi.org/10.1002/cphy.c170036

  • Ramstrand, N., Gjøvaag, T., Starholm, I.M., & Rusaw, D.F. (2019). Effects of knee orthoses on kinesthetic awareness and balance in healthy individuals. Journal of Rehabilitation and Assistive Technologies Engineering, 6, 2055668319852537. https://doi.org/10.1177/2055668319852537

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Relph, N., & Herrington, L. (2016). The effects of knee direction, physical activity and age on knee joint position sense. The Knee, 23(3), 393398. https://doi.org/10.1016/j.knee.2016.02.018

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Relph, N., Herrington, L., & Tyson, S. (2014). The effects of ACL injury on knee proprioception: A meta-analysis. Physiotherapy, 100(3), 187195. https://doi.org/10.1016/j.physio.2013.11.002

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Resch, J.E., May, B., Tomporowski, P.D., & Ferrara, M.S. (2011). Balance performance with a cognitive task: A continuation of the dual-task testing paradigm. Journal of Athletic Training, 46(2), 170175. https://doi.org/10.4085/1062-6050-46.2.170

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sawilowsky, S.S. (2009) New effect size rules of thumb. Journal of Modern Applied Statistical Methods, 8(2), 597599. https://doi.org/10.22237/jmasm/1257035100

    • Search Google Scholar
    • Export Citation
  • Schubert, T., & Szameitat, A.J. (2003). Functional neuroanatomy of interference in overlapping dual tasks: An fMRI study. Cognitive Brain Research, 17(3), 733746. https://doi.org/10.1016/s0926-6410(03)00198-8

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shi, H., Ren, S., Miao, X., Zhang, H., Yu, Y., Hu, X., Huang, H., & Ao, Y. (2021). The effect of cognitive loading on the lower extremity movement coordination variability in patients with anterior cruciate ligament reconstruction. Gait & Posture, 84, 141147. https://doi.org/10.1016/j.gaitpost.2020.10.028

    • Search Google Scholar
    • Export Citation
  • Shrout, P.E., & Fleiss, J.L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86(2), 420428. https://doi.org/10.1037//0033-2909.86.2.420

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Shumway-Cook, A., & Woollacott, M. (2000). Attentional demands and postural control: The effect of sensory context. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 55(1), M10M16. https://doi.org/10.1093/gerona/55.1.m10

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skinner, H.B., & Barrack, R.L. (1991). Joint position sense in the normal and pathologic knee joint. Journal of Electromyography and Kinesiology, 1(3), 180190. https://doi.org/10.1016/1050-6411(91)90033-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Skinner, H.B., Barrack, R.L., & Cook, S.D. (1984). Age-related decline in proprioception. Clinical Orthopaedics and Related Research, 184, 208211. https://doi.org/10.1097/00003086-198404000-00035

    • Search Google Scholar
    • Export Citation
  • Smith, T.O., Davies, L., & Hing, C.B. (2013). A systematic review to determine the reliability of knee joint position sense assessment measures. The Knee, 20(3), 162169. https://doi.org/10.1016/j.knee.2012.06.010

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Sobol, N.A., Hoffmann, K., Vogel, A., Lolk, A., Gottrup, H., Høgh, P., Hasselbalch, S.G., & Beyer, N. (2016). Associations between physical function, dual-task performance and cognition in patients with mild Alzheimer’s disease. Aging & Mental Health, 20(11), 11391146. https://doi.org/10.1080/13607863.2015.1063108

    • Search Google Scholar
    • Export Citation
  • Song, H., Dai, X., Li, J., & Zhu, S. (2018). Hamstring co-contraction in the early stage of rehabilitation after anterior cruciate ligament reconstruction: A longitudinal study. American Journal of Physical Medicine & Rehabilitation, 97(9), 666672. https://doi.org/10.1097/PHM.0000000000000941

    • Search Google Scholar
    • Export Citation
  • Stelmach, G.E., Kelso, J.A., & Wallace, S.A. (1975). Preselection in short-term motor memory. Journal of Experimental Psychology. Human Learning and Memory, 1(6), 745755.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Taylor, J.L., & McCloskey, D.I. (1992). Detection of slow movements imposed at the elbow during active flexion in man. The Journal of Physiology, 457, 503513. https://doi.org/10.1113/jphysiol.1992.sp019390

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Theill, N., Martin, M., Schumacher, V., Bridenbaugh, S.A., & Kressig, R.W. (2011). Simultaneously measuring gait and cognitive performance in cognitively healthy and cognitively impaired older adults: The Basel motor–cognition dual‐task paradigm. Journal of the American Geriatrics Society, 59(6), 10121018. https://doi.org/10.1111/j.1532-5415.2011.03429.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Treisman A.M. (1964). Selective attention in man. British Medical Bulletin, 20, 1216. https://doi.org/10.1093/oxfordjournals.bmb.a070274

  • Verhaeghen, P., Steitz, D.W., Sliwinski, M.J., & Cerella, J. (2003). Aging and dual-task performance: A meta-analysis. Psychology and Aging, 18(3), 443460. https://doi.org/10.1037/0882-7974.18.3.443

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wasylyshyn, C., Verhaeghen, P., & Sliwinski, M.J. (2011). Aging and task switching: A meta-analysis. Psychology and Aging, 26(1), 1520. https://doi.org/10.1037/a0020912

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wickens, C.D. (2002). Multiple resources and performance prediction. Theoretical Issues in Ergonomics Science, 3(2), 159177. https://doi.org/10.1080/14639220210123806

    • Search Google Scholar
    • Export Citation
  • Witchalls, J., Blanch, P., Waddington, G., & Adams, R. (2012). Intrinsic functional deficits associated with increased risk of ankle injuries: A systematic review with meta-analysis. British Journal of Sports Medicine, 46(7), 515523. https://doi.org/10.1136/bjsports-2011-090137

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Wollesen, B.& Voelcker-Rehage, C. (2014). Training effects on motor–cognitive dual-task performance in older adults. European Review of Aging and Physical Activity, 11, 524. https://doi.org/10.1007/s11556-013-0122-z

    • Search Google Scholar
    • Export Citation
  • Wolpert, D.M., & Ghahramani, Z. (2000). Computational principles of movement neuroscience. Nature Neuroscience, 3, 12121217. https://doi.org/10.1038/81497

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yang, Y.R., Cheng, S.J., Lee, Y.J., Liu, Y.C., & Wang, R.Y. (2019). Cognitive and motor dual task gait training exerted specific training effects on dual task gait performance in individuals with Parkinson’s disease: A randomized controlled pilot study. PLoS One, 14(6), e0218180. https://doi.org/10.1371/journal.pone.0218180

    • PubMed
    • Search Google Scholar
    • Export Citation
  • Yasuda, K., Sato, Y., Iimura, N., & Iwata, H. (2014). Allocation of attentional resources toward a secondary cognitive task leads to compromised ankle proprioceptive performance in healthy young adults. Rehabilitation Research and Practice, 2014, 170304. https://doi.org/10.1155/2014/170304

    • Search Google Scholar
    • Export Citation
  • Zandiyeh, P., Küpper, J.C., Mohtadi, N., Goldsmith, P., & Ronsky, J.L. (2019). Effect of stochastic resonance on proprioception and kinesthesia in anterior cruciate ligament reconstructed patients. Journal of Biomechanics, 84, 5257. https://doi.org/10.1016/j.jbiomech.2018.12.018

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 563 563 8
Full Text Views 155 155 45
PDF Downloads 128 128 32