Muscular Efficiency during Treadmill Walking: The Effects of Age and Workload

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Changes in muscular efficiency as it relates to age were examined during inclined submaximal treadmill walking in 298 boys ages 7–15 years. Furthermore, the changes in efficiency with increased work intensity (67–90% V̇O2max) were studied. Efficiency was expressed as submaximal oxygen consumption (V̇O2) and was calculated mathematically as energy out/energy in = (vertical distance) (wt of subject)/(V̇O2 L • min−1) (kcal equivalent). Efficiency, calculated mathematically, was found to significantly increase (p<.01) with age, with the younger children (<9 yrs) being less efficient than the older children (13–15 yrs). These values ranged from 12.8% for the youngest boys (<9 yrs) to 16.4% for the oldest boys (13–15 yrs). In addition, efficiency significantly increased in a linear fashion (p<.01) during submaximal workloads within each age group. No significant interactions (p>.05) between age and workload were found. These values are lower than gross efficiency values during cycling previously reported in the literature for adults; however, they support earlier findings that children increase in efficiency with age and work intensity, regardless if expressed as efficiency or V̇O2 (ml • kg−1 •min−1). These findings suggest that parameters associated with growth and development may influence muscular efficiency with age.

The authors are with the Department of Kinesiology, University of Illinois at Urbana-Champaign, 906 S. Goodwin, Urbana, IL 61801.

Pediatric Exercise Science
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 17 17 1
Full Text Views 0 0 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar