A Systematic Review and Meta-Analysis of Submaximal Exercise-Based Equations to Predict Maximal Oxygen Uptake in Young People

in Pediatric Exercise Science
View More View Less
  • 1 University of South Australia
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Many equations to predict maximal oxygen uptake (V̇O2max) from submaximal exercise tests have been proposed for young people, but the composition and accuracy of these equations vary greatly. The purpose of this systematic review was to analyze all submaximal exercise-based equations to predict V̇O2max measured via direct gas analysis for use with young people. Five databases were systematically searched in February 2013. Studies were included if they used a submaximal, exercise-based method to predict V̇O2max; the actual V̇O2max was gas analyzed; participants were younger than 18 years; and equations included at least one submaximal exercise-based variable. A meta-analysis and narrative synthesis were conducted. Sixteen studies were included. The mean equation validity statistic was strong, r = .786 (95% CI 0.747–0.819). Subgroup meta-analysis suggests exercise mode may contribute to the overall model, with running- and walking-based predictive equations reporting the highest mean r values (running r = .880; walking r = .821) and cycling the weakest (r = .743). Selection of the most appropriate equation should be guided by factors such as purpose, logistic limitations, appropriateness of the validation sample, the level of study bias, and the degree of accuracy. Suggestions regarding the most accurate equation for each exercise mode are provided.

The authors are with the Exercise for Health and Human Performance Group, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia. Address author correspondence to Roger Eston at Roger.Eston@unisa.edu.au.