Exercise for Bone in Childhood—Hitting the Sweet Spot

Click name to view affiliation

Belinda R. Beck Griffith University

Search for other papers by Belinda R. Beck in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: The goal of the current work is to challenge the enduring notion that prepuberty is the optimum timing for maximum bone response to exercise in childhood and to present the evidence that early puberty is a more potently receptive period. Method: The relevant literature is reviewed and the causes of the misconception are addressed in detail. Results: Contrary to prevailing opinion, ample evidence exists to suggest that the peripubertal years represent the developmental period during which bone is likely to respond most robustly to exercise intervention. Conclusion: Public health initiatives that target bone-specific exercise interventions during the pubertal years are likely to be the most effective strategy to harness the increased receptiveness of the growing skeleton to mechanical loading.

Beck is with the School of Allied Health Sciences, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.

Address author correspondence to Belinda R. Beck at b.beck@griffith.edu.au.
  • Collapse
  • Expand
  • 1.

    Akyuz G, Boonen S, O’Brien M, et al. Exercise recommendations: International Osteoporosis Foundation [Internet]. 2015. Available from: https://www.iofbonehealth.org/exercise-recommendations#Recommendations for children and adolescents. Accessed January 14, 2017.

    • Search Google Scholar
    • Export Citation
  • 2.

    Anliker E, Dick C, Rawer R, et al. Effects of jumping exercise on maximum ground reaction force and bone in 8- to 12-year-old boys and girls: a 9-month randomized controlled trial. J Musculoskelet Neuronal Interact. 2012;12(2):5667. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Arnett MG, Lutz B. Effects of rope-jump training on the os calcis stiffness index of postpubescent girls. Med Sci Sports Exerc. 2002;34(12):19139. PubMed doi:10.1097/00005768-200212000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bailey DA. The Saskatchewan pediatric bone mineral accrual study: bone mineral acquisition during the growing years. Int J Sports Med. 1997;18 Suppl 3:1914. doi:10.1055/s-2007-972713

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Bailey DA, Faulkner RA, McKay HA. Growth, physical activity, and bone mineral acquisition. Exerc Sport Sci Rev. 1996;24:23366. PubMed doi:10.1249/00003677-199600240-00010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bailey DA, Martin AD, McKay HA, et al. Calcium accretion in girls and boys during puberty: a longitudinal analysis. J Bone Miner Res. 2000;15(11):224550. PubMed doi:10.1359/jbmr.2000.15.11.2245

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bailey DA, McKay HA, Mirwald RL, et al. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. J Bone Miner Res. 1999;14(10):16729. PubMed doi:10.1359/jbmr.1999.14.10.1672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bass S, Pearce G, Bradney M, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13(3):5007. PubMed doi:10.1359/jbmr.1998.13.3.500

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bass SL. The prepubertal years: a uniquely opportune stage of growth when the skeleton is most responsive to exercise? Sports Med. 2000;30(2):738. PubMed doi:10.2165/00007256-200030020-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Bass SL, Saxon L, Daly RM, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17(12):227480. PubMed doi:10.1359/jbmr.2002.17.12.2274

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Baxter-Jones AD, Faulkner RA, Forwood MR, et al. Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res. 2011;26(8):172939. PubMed doi:10.1002/jbmr.412

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Behringer M, Gruetzner S, McCourt M, et al. Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res. 2014;29(2):46778. PubMed doi:10.1002/jbmr.2036

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Bennell KL, Khan KM, Warmington S, et al. Age does not influence the bone response to treadmill exercise in female rats. Med Sci Sports Exerc. 2002;34(12):195865. PubMed doi:10.1097/00005768-200212000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Bielemann RM, Domingues MR, Horta BL, et al. Physical activity from adolescence to young adulthood and bone mineral density in young adults from the 1982 Pelotas (Brazil) Birth Cohort. Prev Med. 2014;62:2017. PubMed doi:10.1016/j.ypmed.2014.02.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Bonjour JP, Chevalley T, Ferrari S, et al. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009;51 Suppl 1:S517. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Bonnet N, Ferrari SL. Exercise and the skeleton: how it works and what it really does. IBMS BoneKEy. 2010;7(7):23548. doi:10.1138/20100454

  • 17.

    Borer KT. Physical activity in the prevention and amelioration of osteoporosis in women: interaction of mechanical, hormonal and dietary factors. Sports Med. 2005;35(9):779830. PubMed doi:10.2165/00007256-200535090-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Bradney M, Pearce G, Naughton G, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. J Bone Miner Res. 1998;13(12):181421. PubMed doi:10.1359/jbmr.1998.13.12.1814

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Detter FT, Rosengren BE, Dencker M, et al. A 5-year exercise program in pre- and peripubertal children improves bone mass and bone size without affecting fracture risk. Calcif Tissue Int. 2013;92(4):38593. PubMed doi:10.1007/s00223-012-9691-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    DiVasta AD, Gordon CM. Exercise and bone: where do we stand? Metabolism. 2013;62(12):17147. PubMed doi:10.1016/j.metabol.2013.09.016

  • 21.

    Ducher G, Bass SL, Saxon L, et al. Effects of repetitive loading on the growth-induced changes in bone mass and cortical bone geometry: a 12-month study in pre/peri- and postmenarcheal tennis players. J Bone Miner Res. 2011;26(6):13219. PubMed doi:10.1002/jbmr.323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Ebeling PR, Daly RM, Kerr DA, et al. An evidence-informed strategy to prevent osteoporosis in Australia. Med J Aust. 2013;198(2):901. PubMed doi:10.5694/mja12.11363

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Falk B, Bronshtein Z, Zigel L, et al. Quantitative ultrasound of the tibia and radius in prepubertal and early-pubertal female athletes. Arch Pediatr Adolesc Med. 2003;157(2):13943. PubMed doi:10.1001/archpedi.157.2.139

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Farr JN, Laddu DR, Going SB. Exercise, hormones and skeletal adaptations during childhood and adolescence. Pediatr Exerc Sci. 2014;26(4):38491. PubMed doi:10.1123/pes.2014-0077

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Fehily AM, Coles RJ, Evans WD, et al. Factors affecting bone density in young adults. Am J Clin Nutr. 1992;56(3):57986. PubMed

  • 26.

    Forwood MR, Larsen JA. Exercise recommendations for osteoporosis. A position statement of the Australian and New Zealand Bone and Mineral Society. Aust Fam Physician. 2000;29(8):7614. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    French SA, Fulkerson JA, Story M. Increasing weight-bearing physical activity and calcium intake for bone mass growth in children and adolescents: a review of intervention trials. Prev Med. 2000;31(6):72231. PubMed doi:10.1006/pmed.2000.0758

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Fuchs RK, Bauer JJ, Snow CM. Jumping improves hip and lumbar spine bone mass in prepubescent children: a randomized controlled trial. J Bone Miner Res. 2001;16(1):14856. PubMed doi:10.1359/jbmr.2001.16.1.148

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Greene DA, Wiebe PN, Naughton GA. Influence of drop-landing exercises on bone geometry and biomechanical properties in prepubertal girls: a randomized controlled study. Calcif Tissue Int. 2009;85(2):94103. PubMed doi:10.1007/s00223-009-9253-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Guadalupe-Grau A, Fuentes T, Guerra B, et al. Exercise and bone mass in adults. Sports Med. 2009;39(6):43968. PubMed doi:10.2165/00007256-200939060-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Gunter K, Baxter-Jones AD, Mirwald RL, et al. Impact exercise increases BMC during growth: an 8-year longitudinal study. J Bone Miner Res. 2008;23(7):98693. PubMed doi:10.1359/jbmr.071201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Gunter K, Baxter-Jones AD, Mirwald RL, et al. Jump starting skeletal health: a 4-year longitudinal study assessing the effects of jumping on skeletal development in pre and circum pubertal children. Bone. 2008;42(4):7108. PubMed doi:10.1016/j.bone.2008.01.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Haapasalo H, Kannus P, Sievanen H, et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res. 1998;13(2):3109. PubMed doi:10.1359/jbmr.1998.13.2.310

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Haapasalo H, Kannus P, Sievanen H, et al. Long-term unilateral loading and bone mineral density and content in female squash players. Calcif Tissue Int. 1994;54(4):24955. PubMed doi:10.1007/BF00295946

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Haapasalo H, Kontulainen S, Sievanen H, et al. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone. 2000;27(3):3517. PubMed doi:10.1016/S8756-3282(00)00331-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Heinonen A, Sievanen H, Kannus P, et al. High-impact exercise and bones of growing girls: a 9-month controlled trial. Osteoporos Int. 2000;11(12):10107. PubMed doi:10.1007/s001980070021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Hernandez CJ, Beaupre GS, Carter DR. A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int. 2003;14(10):8437. PubMed doi:10.1007/s00198-003-1454-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40(1):1427. PubMed doi:10.1016/j.bone.2006.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Ianc D, Serbescu C, Bembea M, et al. Effects of an exercise program and a calcium supplementation on bone in children: a randomized control trial. Int J Sport Nutr Exerc Metab. 2006;16(6):58096. PubMed doi:10.1123/ijsnem.16.6.580

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Ishikawa S, Kim Y, Kang M, et al. Effects of weight-bearing exercise on bone health in girls: a meta-analysis. Sports Med. 2013;43(9):87592. PubMed doi:10.1007/s40279-013-0060-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Iuliano-Burns S, Saxon L, Naughton G, et al. Regional specificity of exercise and calcium during skeletal growth in girls: a randomized controlled trial. J Bone Miner Res. 2003;18(1):15662. PubMed doi:10.1359/jbmr.2003.18.1.156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Jarvinen TL, Kannus P, Pajamaki I, et al. Estrogen deposits extra mineral into bones of female rats in puberty, but simultaneously seems to suppress the responsiveness of female skeleton to mechanical loading. Bone. 2003;32(6):64251. PubMed doi:10.1016/S8756-3282(03)00100-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Jarvinen TL, Pajamaki I, Sievanen H, et al. Femoral neck response to exercise and subsequent deconditioning in young and adult rats. J Bone Miner Res. 2003;18(7):12929. PubMed doi:10.1359/jbmr.2003.18.7.1292

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Kannus P, Haapasalo H, Sankelo M, et al. Effect of starting age of physical activity on bone mass in the dominant arm of tennis and squash players. Ann Intern Med. 1995;123(1):2731. PubMed doi:10.7326/0003-4819-123-1-199507010-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Kohrt WM, Bloomfield SA, Little KD, et al. American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36(11):198596. PubMed doi:10.1249/01.MSS.0000142662.21767.58

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Kontulainen S, Kannus P, Haapasalo H, et al. Good maintenance of exercise-induced bone gain with decreased training of female tennis and squash players: a prospective 5-year follow-up study of young and old starters and controls. J Bone Miner Res. 2001;16(2):195201. PubMed doi:10.1359/jbmr.2001.16.2.195

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Lappe JM, Watson P, Gilsanz V, et al. The longitudinal effects of physical activity and dietary calcium on bone mass accrual across stages of pubertal development. J Bone Miner Res. 2015;30(1):15664. PubMed doi:10.1002/jbmr.2319

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Linden C, Ahlborg HG, Besjakov J, et al. A school curriculum-based exercise program increases bone mineral accrual and bone size in prepubertal girls: two-year data from the pediatric osteoporosis prevention (POP) study. J Bone Miner Res. 2006;21(6):82935. PubMed doi:10.1359/jbmr.060304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Linden C, Alwis G, Ahlborg H, et al. Exercise, bone mass and bone size in prepubertal boys: one-year data from the pediatric osteoporosis prevention study. Scand J Med Sci Sports. 2007;17(4):3407. PubMed doi:10.1111/j.1600-0838.2006.00568.x

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Macdonald HM, Kontulainen SA, Khan KM, et al. Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res. 2007;22(3):43446. PubMed doi:10.1359/jbmr.061205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    MacKelvie KJ, Khan KM, McKay HA. Is there a critical period for bone response to weight-bearing exercise in children and adolescents? A systematic review. Br J Sports Med. 2002;36(4):2507; discussion 7. PubMed doi:10.1136/bjsm.36.4.250

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    MacKelvie KJ, Khan KM, Petit MA, et al. A school-based exercise intervention elicits substantial bone health benefits: a 2-year randomized controlled trial in girls. Pediatrics. 2003;112(6 Pt 1):e447. PubMed doi:10.1542/peds.112.6.e447

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Mackelvie KJ, McKay HA, Khan KM, et al. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr. 2001;139(4):5018. PubMed doi:10.1067/mpd.2001.118190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Marshall WA, Tanner JM. Variations in pattern of pubertal changes in girls. Arch Dis Child. 1969;44(235):291303. PubMed doi:10.1136/adc.44.235.291

  • 55.

    Marshall WA, Tanner JM. Variations in the pattern of pubertal changes in boys. Arch Dis Child. 1970;45(239):1323. PubMed doi:10.1136/adc.45.239.13

  • 56.

    McKay HA, Bailey DA, Mirwald RL, et al. Peak bone mineral accrual and age at menarche in adolescent girls: a 6-year longitudinal study. J Pediatr. 1998;133(5):6827. PubMed doi:10.1016/S0022-3476(98)70112-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    McKay HA, MacLean L, Petit M, et al. “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med. 2005;39(8):5216. PubMed doi:10.1136/bjsm.2004.014266

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    McKay HA, Petit MA, Schutz RW, et al. Augmented trochanteric bone mineral density after modified physical education classes: a randomized school-based exercise intervention study in prepubescent and early pubescent children. J Pediatr. 2000;136(2):15662. PubMed doi:10.1016/S0022-3476(00)70095-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    McWhannell N, Henaghan JL, Foweather L, et al. The effect of a 9-week physical activity programme on bone and body composition of children aged 10-11 years: an exploratory trial. Int J Sports Med. 2008;29(12):9417. PubMed doi:10.1055/s-2008-1038601

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Meyer U, Romann M, Zahner L, et al. Effect of a general school-based physical activity intervention on bone mineral content and density: a cluster-randomized controlled trial. Bone. 2011;48(4):7927. PubMed doi:10.1016/j.bone.2010.11.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Mirkin G. Prepubertal exercise prevents osteoporosis [Internet]. 2013 Available from: http://drmirkin.com/fitness/9044.html. Accessed January 14, 2017.

    • Search Google Scholar
    • Export Citation
  • 62.

    Modern Medicine Network [Internet]. North Olmsted, OH: Medical Communications Group; 2012. Available from: http://contemporarypediatrics.modernmedicine.com/contemporary-pediatrics/content/prepubertal-exercise-increases-bone-mass-size?page=full

    • Search Google Scholar
    • Export Citation
  • 63.

    Modlesky CM, Lewis RD. Does exercise during growth have a long-term effect on bone health? Exerc Sport Sci Rev. 2002;30(4):1716. PubMed doi:10.1097/00003677-200210000-00006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Morris FL, Naughton GA, Gibbs JL, et al. Prospective ten-month exercise intervention in premenarcheal girls: positive effects on bone and lean mass. J Bone Miner Res. 1997;12(9):145362. PubMed doi:10.1359/jbmr.1997.12.9.1453

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 65.

    Mughal MZ, Khadilkar AV. The accrual of bone mass during childhood and puberty. Curr Opin Endocrinol Diabetes Obes. 2011;18(1):2832. PubMed doi:10.1097/MED.0b013e3283416441

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Nikander R, Sievanen H, Heinonen A, et al. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47. PubMed doi:10.1186/1741-7015-8-47

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Nordstrom A, Olsson T, Nordstrom P. Bone gained from physical activity and lost through detraining: a longitudinal study in young males. Osteoporos Int. 2005;16(7):83541. PubMed doi:10.1007/s00198-004-1749-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Nordstrom A, Olsson T, Nordstrom P. Sustained benefits from previous physical activity on bone mineral density in males. J Clin Endocrinol Metab. 2006;91(7):26004. PubMed doi:10.1210/jc.2006-0151

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Martin MA (editor). Oxford Concise Medical Dictionary. Oxford: Oxford University Press; 2010.

  • 70.

    Petit MA, Hughes JM, Wetzsteon RJ, et al. Re: weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;41(5):9035; author reply 6–7. PubMed doi:10.1016/j.bone.2007.06.015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Petit MA, McKay HA, MacKelvie KJ, et al. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17(3):36372. PubMed doi:10.1359/jbmr.2002.17.3.363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72.

    Rantalainen T, Weeks BK, Nogueira RC, et al. Effects of bone-specific physical activity, gender and maturity on tibial cross-sectional bone material distribution: a cross-sectional pQCT comparison of children and young adults aged 5-29 years. Bone. 2015;72:1018. PubMed doi:10.1016/j.bone.2014.11.015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 73.

    Reive S. Bone health: Kilborn physiotherapy [Internet]. Available from: http://kilbornphysiotherapy.ca/BoneHealth.html. Accessed January 14, 2017.

    • Search Google Scholar
    • Export Citation
  • 74.

    Rideout CA, McKay HA, Barr SI. Self-reported lifetime physical activity and areal bone mineral density in healthy postmenopausal women: the importance of teenage activity. Calcif Tissue Int. 2006;79(4):21422. PubMed doi:10.1007/s00223-006-0058-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Ruff CB, Hayes WC. Cross-sectional geometry of Pecos pueblo femora and tibiae—a biomechanical investigation: II. Sex, age, and side differences. Am J Phys Anthrop. 1983;60:383400. PubMed doi:10.1002/ajpa.1330600309

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 76.

    Schwab P, Scalapino K. Exercise for bone health: rationale and prescription. Curr Opin Rheumatol. 2011;23(2):13741. PubMed doi:10.1097/BOR.0b013e3283434501

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Slemenda CW, Reister TK, Hui SL, et al. Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. J Pediatr. 1994;125(2):2017. doi:10.1016/S0022-3476(94)70193-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Specker BL. Influence of rapid growth on skeletal adaptation to exercise. J Musculoskelet Neuronal Interact. 2006;6(2):14753. PubMed

  • 79.

    Turner CH, Forwood MR, Rho JY, et al. Mechanical loading thresholds for lamellar and woven bone formation. J Bone Miner Res. 1994;1(9):8797. PubMed doi:10.1002/jbmr.5650090113

    • Search Google Scholar
    • Export Citation
  • 80.

    Turner CH, Takano Y, Owan I. Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res. 1995;10(10):15449. PubMed doi:10.1002/jbmr.5650101016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Tweens: What’s happening—growth and development. National Bone Health Alliance. Available from: http://www.4bonehealth.org/education/tweens/

    • Search Google Scholar
    • Export Citation
  • 82.

    Valdimarsson O, Linden C, Johnell O, et al. Daily physical education in the school curriculum in prepubertal girls during 1 year is followed by an increase in bone mineral accrual and bone width—data from the prospective controlled Malmo pediatric osteoporosis prevention study. Calcif Tissue Int. 2006;78(2):6571. PubMed doi:10.1007/s00223-005-0096-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Van Coeverden SC, De Ridder CM, Roos JC, et al. Pubertal maturation characteristics and the rate of bone mass development longitudinally toward menarche. J Bone Miner Res. 2001;16(4):77481. PubMed doi:10.1359/jbmr.2001.16.4.774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Van Langendonck L, Claessens AL, Vlietinck R, et al. Influence of weight-bearing exercises on bone acquisition in prepubertal monozygotic female twins: a randomized controlled prospective study. Calcif Tissue Int. 2003;72(6):66674. PubMed doi:10.1007/s00223-002-2030-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Vicente-Rodriguez G. How does exercise affect bone development during growth? Sports Med. 2006;36(7):5619. PubMed doi:10.2165/00007256-200636070-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, et al. Enhanced bone mass and physical fitness in prepubescent footballers. Bone. 2003;33(5):8539. PubMed doi:10.1016/j.bone.2003.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Weeks BK, Beck BR. Are bone and muscle changes from POWER PE, an 8-month in-school jumping intervention, maintained at three years? PLoS ONE. 2012;7(6):e39133. PubMed doi:10.1371/journal.pone.0039133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Weeks BK, Young CM, Beck BR. Eight months of regular in-school jumping improves indices of bone strength in adolescent boys and Girls: the POWER PE study. J Bone Miner Res. 2008;23(7):100211. PubMed doi:10.1359/jbmr.080226

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Wentworth K. What happens to our bones during adolescence? [Internet]. 2013. Available from: http://ezinearticles.com/?What-Happens-To-Our-Bones-During-Adolescence?&id=8150534. Accessed January 14, 2017.

    • Search Google Scholar
    • Export Citation
  • 90.

    Wiebe PN, Blimkie CJ, Farpour-Lambert N, et al. Effects of single-leg drop-landing exercise from different heights on skeletal adaptations in prepubertal girls: a randomized controlled study. Pediatr Exerc Sci. 2008;20(2):21128. PubMed doi:10.1123/pes.20.2.211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2024 502 18
Full Text Views 38 16 3
PDF Downloads 33 16 2