The Role of Exercise in Prevention and Treatment of Osteopenia of Prematurity: An Update

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Premature infants have an increased risk of osteopenia due to limited bone mass accretion in utero and a greater need for bone nutrients. Until recently, most efforts to prevent osteopenia of prematurity focused on nutritional changes. Recent studies indicate that passive range-of-motion exercise of the extremities may lead to beneficial effects on body weight, increased bone mineralization, increased bone formation markers and leptin levels, and attenuation of the natural postnatal decline in bone speed of sound. These results suggest that exercise may play an important role in the prevention and treatment of osteopenia of prematurity. This review summarizes our current knowledge on the role of exercise in the prevention and treatment of osteopenia of prematurity.

Eliakim, Litmanovitz, and Nemet are with the Dept. of Pediatrics, Child Health and Sports Center, Meir Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.

Address author correspondence to Alon Eliakim at eliakim@internet-zahav.net.
  • 1.

    Aly H, Moustafa MF, Hassanein SM, Massaro AN, Amer HA, Patel K. Physical activity combined with massage improves bone mineralization in premature infants: a randomized trial. J Perinatol. 2004;24(5):3059. PubMed doi:10.1038/sj.jp.7211083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Bowden LS, Jones CJ, Ryan SW. Bone mineralisation in ex-preterm infants aged 8 years. Eur J Pediatr. 1999;158(8):65861. PubMed doi:10.1007/s004310051171

  • 3.

    Chan GM, Armstrong C, Moyer-Mileur L, Hoff C. Growth and bone mineralization in children born prematurely. J Perinatol. 2008;28(9):61923. PubMed doi:10.1038/jp.2008.59

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Chen H, Blackburn WR, Wertelecki W. Fetal akinesia and multiple perinatal fractures. Am J Med Genet. 1995;55(4):4727. PubMed doi:10.1002/ajmg.1320550416

  • 5.

    Chen HL, Lee CL, Tseng HI, Yang SN, Yang RC, Jao HC. Assisted exercise improves bone strength in very low birthweight infants by bone quantitative ultrasound. J Paediatr Child Health. 2010;46(11):6539. PubMed doi:10.1111/j.1440-1754.2010.01822.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Dabezies EJ, Warren PD. Fractures in very low birth weight infants with rickets. Clin Orthop Relat Res. 1997;335:2339. PubMed

  • 7.

    Eliakim A, Dolfin T, Weiss E, Shainkin-Kestenbaum R, Lis M, Nemet D. The effects of exercise on body weight and circulating leptin in premature infants. J Perinatol. 2002;22(7):5504. PubMed doi:10.1038/sj.jp.7210788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Eliakim A, Nemet D, Friedland O, Dolfin T, Regev RH. Spontaneous activity in premature infants affects bone strength. J Perinatol. 2002;22(8):6502. PubMed doi:10.1038/sj.jp.7210820

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Eliakim A, Raisz LG, Brasel JA, Cooper DM. Evidence for increased bone formation following a brief endurance-type training intervention in adolescent males. J Bone Miner Res. 1997;12(10):170813. PubMed doi:10.1359/jbmr.1997.12.10.1708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Erdem E, Tosun Ö, Bayat M, Korkmaz Z, Halis H, Güneş T. Daily physical activity in low-risk extremely low birth weight preterm infants: positive impact on bone mineral density and anthropometric measurements. J Bone Miner Metab. 2015;33(3):32934. PubMed doi:10.1007/s00774-014-0594-6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Falk B, Eliakim A, Dotan R, Liebermann DG, Regev R, Bar-Or O. Birth weight and physical ability in 5- to 8-yr-old healthy children born prematurely. Med Sci Sports Exerc. 1997;29(9):112430. PubMed doi:10.1097/00005768-199709000-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Farrell ET, Bates ML, Pegelow DF, et al. Pulmonary gas exchange and exercise capacity in adults born preterm. Ann Am Thorac Soc. 2015;12(8):11307. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gomez C, David V, Peet NM, et al. Absence of mechanical loading in utero influences bone mass and architecture but not innervation in Myod-Myf5-deficient mice. J Anat. 2007;210(3):25971. PubMed doi:10.1111/j.1469-7580.2007.00698.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Haley S, Beachy J, Ivaska KK, Slater H, Smith S, Moyer-Mileur LJ. Tactile/kinesthetic stimulation (TKS) increases tibial speed of sound and urinary osteocalcin (U-MidOC and unOC) in premature infants (29-32 weeks PMA). Bone. 2012;51(4):6616. PubMed doi:10.1016/j.bone.2012.07.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hovi P, Andersson S, Järvenpää AL, et al. Decreased bone mineral density in adults born with very low birth weight: a cohort study. PLoS Med. 2009;6(8):1000135. PubMed doi:10.1371/journal.pmed.1000135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Litmanovitz I, Dolfin T, Arnon S, Regev RH, Nemet D, Eliakim A. Assisted exercise and bone strength in preterm infants. Calcif Tissue Int. 2007;80(1):3943. PubMed doi:10.1007/s00223-006-0149-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Litmanovitz I, Dolfin T, Friedland O, et al. Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics. 2003;112(1 Pt 1):159. PubMed doi:10.1542/peds.112.1.15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Litmanovitz I, Erez H, Eliakim A, et al. The effect of assisted exercise frequency on bone strength in very low birth weight preterm infants: a randomized control trial. Calcif Tissue Int. 2016;99(3):23742. PubMed doi:10.1007/s00223-016-0145-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Littner Y, Mandel D, Mimouni FB, Dollberg S. Bone ultrasound velocity curves of newly born term and preterm infants. J Pediatr Endocrinol Metab. 2003;16(1):437. PubMed doi:10.1515/JPEM.2003.16.1.43

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Löfqvist C, Engström E, Sigurdsson J, et al. Postnatal head growth deficit among premature infants parallels retinopathy of prematurity and insulin-like growth factor-1 deficit. Pediatrics. 2006;117(6):19308. doi:10.1542/peds.2005-1926

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    McQueen D, Lakes K, Rich J, et al. Feasibility of a caregiver-assisted exercise program for preterm infants. J Perinat Neonatal Nurs. 2013;27(2):18492. PubMed doi:10.1097/JPN.0b013e31828b244a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Moyer-Mileur LJ, Ball SD, Brunstetter VL, Chan GM. Maternal-administered physical activity enhances bone mineral acquisition in premature very low birth weight infants. J Perinatol. 2008;28(6):4327 PubMed doi:10.1038/jp.2008.17

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Moyer-Mileur LJ, Brunstetter V, McNaught TP, Gill G, Chan GM. Daily physical activity program increases bone mineralization and growth in preterm very low birth weight infants. Pediatrics. 2000;106(5):108892. PubMed doi:10.1542/peds.106.5.1088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Moyer-Mileur L, Luetkemeier M, Boomer L, Chan GM. Effect of physical activity on bone mineralization in premature infants. J Pediatr. 1995;127(4):6205. PubMed doi:10.1016/S0022-3476(95)70127-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Nemet D, Dolfin T, Litmanowitz I, Shainkin-Kestenbaum R, Lis M, Eliakim A. Evidence for exercise-induced bone formation in premature infants. Int J Sports Med. 2002;23(2):825. PubMed doi:10.1055/s-2002-20134

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nemet D, Dolfin T, Wolach B, Eliakim A. Quantitative ultrasound measurements of bone speed of sound in premature infants. Eur J Pediatr. 2001;160(12):73640. PubMed doi:10.1007/s004310100849

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Rigo J, De Curtis M. Disorders of calcium, phosphorus and magnesium metabolism. In: Martin RJ, Fanaroff AA, Walsh MC, editors. Neonatal-Perinatal Medicine: Disease of the Fetus and Infant. Vol 8. Philadelphia: Elsevier; 2006, pp. 1492523.

    • Search Google Scholar
    • Export Citation
  • 28.

    Schulzke SM, Kaempfen S, Trachsel D, Patole SK. Physical activity programs for promoting bone mineralization and growth in preterm infants. Cochrane Database Syst Rev. 2014;(4):CD005387. PubMed doi:10.1002/14651858.CD005387.pub3

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Shiff Y, Eliakim A, Shainkin-Kestenbaum R, Arnon S, Lis M, Dolfin T. Measurements of bone turnover markers in premature infants. J Pediatr Endocrinol Metab. 2001;14(4):38995. PubMed doi:10.1515/JPEM.2001.14.4.389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Tosun Ö, Bayat M, Güneş T, Erdem E. Daily physical activity in low-risk pre-term infants: positive impact on bone strength and mid-upper arm circumference. Ann Hum Biol. 2011;38(5):6359. PubMed doi:10.3109/03014460.2011.598187

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Vignochi CM, Miura E, Canani LH. Effects of motor physical therapy on bone mineralization in premature infants: a randomized controlled study. J Perinatol. 2008;28(9):62431. PubMed doi:10.1038/jp.2008.60

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Vignochi CM, Silveira RC, Miura E, Canani LH, Procianoy RS. Physical therapy reduces bone resorption and increases bone formation in preterm infants. Am J Perinatol. 2012;29(8):5738. PubMed doi:10.1055/s-0032-1310520

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    White JL, Labarba RC. The effects of tactile and kinesthetic stimulation on neonatal development in the premature infant. Dev Psychobiol. 1976;9(6):56977. PubMed doi:10.1002/dev.420090610

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Williams JR, Davidson F, Menon G, McIntosh N. A portable dual energy x-ray absorptiometry technique for the measurement of bone mineral in preterm infants. Pediatr Res. 1994;36(3):3517. PubMed doi:10.1203/00006450-199409000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Zofková I. Hormonal aspects of the muscle-bone unit. Physiol Res. 2008;57 Suppl 1:S15969. PubMed

All Time Past Year Past 30 Days
Abstract Views 756 722 47
Full Text Views 9 9 1
PDF Downloads 4 4 0