Bone Health of Young Male Gymnasts: A Systematic Review

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: To synthesize existing literatures on the impact of gymnastics participation on the skeletal health of young male gymnasts. Methods: Following a systematic search, 12 studies were included in this review. Quality of included studies was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE modified) criteria. Results: Assessment of skeletal health varied between and within imaging modality protocols. Gymnasts had higher total bone content, greater total and trabecular bone density, larger bone size, a thicker cortex, and higher estimates of bone strength than controls. Recreational studies reported no difference in height or weight between gymnasts and controls; however, elite gymnasts were shorter and lighter than nongymnasts. STROBE scores ranged from 65% to 95%. Conclusion: Gymnastics participation may be beneficial to the bone health of young males as gymnasts had higher bone density and bone mineral content, larger bones, and greater estimates of bone strength than controls.

Burt is with the Dept. of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada. Greene is with the School of Exercise Science, Australian Catholic University, Strathfield, New South Wales, Australia. Naughton is with the School of Exercise Science, Australian Catholic University, Fitzroy, Victoria, Australia.

Address author correspondence to Lauren A. Burt at lburt@ucalgary.ca.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Bass SPearce GBradney Met al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13:5007. PubMed doi:10.1359/jbmr.1998.13.3.500.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Beck TJ. Hip Structural Analysis (HSA) Program (BMD and Structural Geometry Methodology). Baltimore, MD: Department of Radiology, School of Medicine, Johns Hopkins University; 2002.

    • Search Google Scholar
    • Export Citation
  • 3.

    Binkovitz LAHenwood MJ. Pediatric DXA: technique and interpretation. Pediatr Radiol. 2007;37:2131. PubMed doi:10.1007/s00247-006-0153-y.

  • 4.

    Burt LAGreene DADucher GNaughton GA. Skeletal adaptations associated with pre-pubertal gymnastics participation as determined by DXA and pQCT: a systematic review and meta-analysis. J Sci Med Sport. 2013;16:2319. PubMed doi:10.1016/j.jsams.2012.07.006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Burt LANaughton GAGreene DACourteix DDucher G. Non-elite gymnastics participation is associated with greater bone strength, muscle size, and function in pre- and early pubertal girls. Osteoporos Int. 2012;23:127786. PubMed doi:10.1007/s00198-011-1677-z.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Burt LANaughton GAHigham DGLandeo R. Training load in pre-pubertal female artistic gymnastics. Sci Gymnastics J. 2010;2:514.

  • 7.

    Courteix DLespessailles EJaffre CObert PBenhamou CL. Bone mineral acquisition and somatic development in highly trained girl gymnasts. Acta Pediatrica. 1999;88:8038. PubMed doi:10.1111/j.1651-2227.1999.tb00052.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Covidence Systematic Review Software. Melbourne, Australia: Veritas Health Innovation; 2015. Available from: https://www.covidence.org/

    • Export Citation
  • 9.

    Crabtree NJLeonard MBZemel BS. Dual-energy X-ray absorptiometry. In: Sawyer AJBachrach LKFung EB editors. Bone Densitometry in Growing Patients. Totowa, NJ: Humana Press2007 pp. 4157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Daly RMRich PAKlein RBass S. Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: a prospective study in young male gymnasts. J Bone Miner Res. 1999;14:122230. PubMed doi:10.1359/jbmr.1999.14.7.1222.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dowthwaite JNScerpella TA. Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics. Osteoporos Int. 2011;22:20716. PubMed doi:10.1007/s00198-010-1233-2.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    von Elm EAltman DGEgger Met al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:14537. doi:10.1016/S0140-6736(07)61602-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Erlandson MCKontulainen SABaxter-Jones AD. Precompetitive and recreational gymnasts have greater bone density, mass, and estimated strength at the distal radius in young childhood. Osteoporos Int. 2011;22:7584. PubMed doi:10.1007/s00198-010-1263-9.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Erlandson MCKontulainen SAChilibeck PDArnold CMBaxter-Jones AD. Bone mineral accrual in 4- to 10-year-old precompetitive, recreational gymnasts: a 4-year longitudinal study. J Bone Miner Res. 2011;26:131320. PubMed doi:10.1002/jbmr.338.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Georgopoulos NATheodoropoulou ALeglise MVagenakis AGMarkou KB. Growth and skeletal maturation in male and female artistic gymnasts. J Clin Endocrinol Metab. 2004;89:437782. PubMed doi:10.1210/jc.2003-031864.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Greulich WWPyle SI. Radiographic Atlas of Skeletal Development of the Hand and Wrist. Stanford, CA: Stanford University Press; 1959.

  • 17.

    Grossfeld A. Changes during the 110 years of the world artistic gymnastics championships. Sci Gymnastics J. 2014;6:527.

  • 18.

    Gruodyte-Raciene RErlandson MCJackowski SABaxter Jones AD. Structural strength development at the proximal femur in 4- to 10-year-old precompetitive gymnasts: a 4-year longitudinal hip structural analysis study. J Bone Miner Res. 2013;28:2592600. PubMed doi:10.1002/jbmr.1986.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hendriksma MJoosten MHMAPeters JPMGrolman WStegeman I. Evaluation of the quality of reporting of observational studies in otorhinolaryngology-based on the STROBE statement. PLoS One. 2017;12:0169316. PubMed doi:10.1371/journal.pone.0169316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Jackowski SABaxter-Jones ADGGruodyte-Raciene RKontulainen SAErlandson MC. A longitudinal study of bone area, content, density, and strength development at the radius and tibia in children 4–12 years of age exposed to recreational gymnastics. Osteoporos Int. 2015;26:167790. PubMed doi:10.1007/s00198-015-3041-1.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jemni MSands WAFirieme FStone MHCooke CB. Any effect of gymnastics training on upper-body and lower-body aerobic and power components in national and international male gymnasts? J Strength Cond Res. 2006;20:899907. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Laing EMWilson ARModlesky CMO’Connor PJHall DBLewis RD. Initial years of recreational artistic gymnastics training improves lumbar spine bone mineral accrual in 4- to 8-year-old females. J Bone Miner Res. 2005;20:50919. PubMed doi:10.1359/JBMR.041127.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Maffulli NKing JBHelms P. Training in élite young athletes (the Training of Young Athletes (TOYA) Study): injuries, flexibility and isometric strength. Br J Sports Med. 1994;28:12336. PubMed doi:10.1136/bjsm.28.2.123.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Markou KBMylonas PTheodoropoulou Aet al. The influence of intensive physical exercise on bone acquisition in adolescent elite female and male artistic gymnasts. J Clin Endocrinol Metab. 2004;89:43837. PubMed doi:10.1210/jc.2003-031865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Mitchell MMuftakhidinov BWinchen T. Engauge digitizer–digitizing software [Internet]. [cited Oct 22]. Available from: http://markummitchell.github.io/engauge-digitizer

    • Export Citation
  • 26.

    Moore SAMoore MKlentrou PSullivan PFalk B. Maturity status in male child and adolescent athletes. J Sports Med Phys Fitness. 2010;50:48693. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Nikander RSievänen HUusi-Rasi KHeinonen AKannus P. Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone. 2006;39:88694. PubMed doi:10.1016/j.bone.2006.04.005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Njeh CFBoivin CMLangton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int. 1997;7:722. PubMed doi:10.1007/BF01623454.

  • 29.

    Panzer VP. Lower extremity loads in landings of elite gymnasts [Doctoral thesis]. Oregon: University of Oregon; 1987.

    • Export Citation
  • 30.

    Schipilow JDMacdonald HMLiphardt A-MKan MBoyd SK. Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: an HR-pQCT study. Bone. 2013;56:2819. PubMed doi:10.1016/j.bone.2013.06.014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Vandenbroucke JPElm von EAltman DGet al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4:e2971654. PubMed doi:10.1371/journal.pmed.0040297.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ward KAMughal ZAdams JE. Tools for measuring bone in children and adolescents. In: Bone Densitometry in Growing Patients. Totowa, NJ: Humana Press; 2007 pp. 1540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ward KARoberts SAdams JMughal M. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone. 2005;36:10128. PubMed doi:10.1016/j.bone.2005.03.001.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Ward KARoberts SAAdams JELanham-New SMughal MZ. Calcium supplementation and weight bearing physical activity: do they have a combined effect on the bone density of pre-pubertal children? Bone. 2007;41:496504. PubMed doi:10.1016/j.bone.2007.06.007.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Weimann EWitzel CSchwidergall SBöhles HJ. Peripubertal pertubations in elite gymnasts caused by sport specific training regimes and inadequate nutritional intake. Int J Sports Med. 2000;21:2105. PubMed doi:10.1055/s-2000-8875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Zanker CLGannon LCooke CBGee KLOldroyd BTruscott JG. Differences in bone density, body composition, physical activity, and diet between child gymnasts and untrained children 7–8 years of age. J Bone Miner Res. 2003;18:104350. PubMed doi:10.1359/jbmr.2003.18.6.1043.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 103 103 17
Full Text Views 5 5 1
PDF Downloads 3 3 1
Altmetric Badge
PubMed
Google Scholar
Cited By