Bone Health of Young Male Gymnasts: A Systematic Review

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Purpose: To synthesize existing literatures on the impact of gymnastics participation on the skeletal health of young male gymnasts. Methods: Following a systematic search, 12 studies were included in this review. Quality of included studies was assessed using the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE modified) criteria. Results: Assessment of skeletal health varied between and within imaging modality protocols. Gymnasts had higher total bone content, greater total and trabecular bone density, larger bone size, a thicker cortex, and higher estimates of bone strength than controls. Recreational studies reported no difference in height or weight between gymnasts and controls; however, elite gymnasts were shorter and lighter than nongymnasts. STROBE scores ranged from 65% to 95%. Conclusion: Gymnastics participation may be beneficial to the bone health of young males as gymnasts had higher bone density and bone mineral content, larger bones, and greater estimates of bone strength than controls.

Burt is with the Dept. of Radiology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, Alberta, Canada. Greene is with the School of Exercise Science, Australian Catholic University, Strathfield, New South Wales, Australia. Naughton is with the School of Exercise Science, Australian Catholic University, Fitzroy, Victoria, Australia.

Address author correspondence to Lauren A. Burt at lburt@ucalgary.ca.
  • 1.

    Bass S, Pearce G, Bradney M, et al. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13:5007. PubMed doi:10.1359/jbmr.1998.13.3.500.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Beck TJ. Hip Structural Analysis (HSA) Program (BMD and Structural Geometry Methodology). Baltimore, MD: Department of Radiology, School of Medicine, Johns Hopkins University; 2002.

    • Search Google Scholar
    • Export Citation
  • 3.

    Binkovitz LA, Henwood MJ. Pediatric DXA: technique and interpretation. Pediatr Radiol. 2007;37:2131. PubMed doi:10.1007/s00247-006-0153-y.

  • 4.

    Burt LA, Greene DA, Ducher G, Naughton GA. Skeletal adaptations associated with pre-pubertal gymnastics participation as determined by DXA and pQCT: a systematic review and meta-analysis. J Sci Med Sport. 2013;16:2319. PubMed doi:10.1016/j.jsams.2012.07.006.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Burt LA, Naughton GA, Greene DA, Courteix D, Ducher G. Non-elite gymnastics participation is associated with greater bone strength, muscle size, and function in pre- and early pubertal girls. Osteoporos Int. 2012;23:127786. PubMed doi:10.1007/s00198-011-1677-z.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Burt LA, Naughton GA, Higham DG, Landeo R. Training load in pre-pubertal female artistic gymnastics. Sci Gymnastics J. 2010;2:514.

  • 7.

    Courteix D, Lespessailles E, Jaffre C, Obert P, Benhamou CL. Bone mineral acquisition and somatic development in highly trained girl gymnasts. Acta Pediatrica. 1999;88:8038. PubMed doi:10.1111/j.1651-2227.1999.tb00052.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Covidence Systematic Review Software. Melbourne, Australia: Veritas Health Innovation; 2015. Available from: https://www.covidence.org/

    • Export Citation
  • 9.

    Crabtree NJ, Leonard MB, Zemel BS. Dual-energy X-ray absorptiometry. In: Sawyer AJ, Bachrach LK, Fung EB editors. Bone Densitometry in Growing Patients. Totowa, NJ: Humana Press, 2007, pp. 4157.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Daly RM, Rich PA, Klein R, Bass S. Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: a prospective study in young male gymnasts. J Bone Miner Res. 1999;14:122230. PubMed doi:10.1359/jbmr.1999.14.7.1222.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dowthwaite JN, Scerpella TA. Distal radius geometry and skeletal strength indices after peripubertal artistic gymnastics. Osteoporos Int. 2011;22:20716. PubMed doi:10.1007/s00198-010-1233-2.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    von Elm E, Altman DG, Egger M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370:14537. doi:10.1016/S0140-6736(07)61602-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Erlandson MC, Kontulainen SA, Baxter-Jones AD. Precompetitive and recreational gymnasts have greater bone density, mass, and estimated strength at the distal radius in young childhood. Osteoporos Int. 2011;22:7584. PubMed doi:10.1007/s00198-010-1263-9.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Baxter-Jones AD. Bone mineral accrual in 4- to 10-year-old precompetitive, recreational gymnasts: a 4-year longitudinal study. J Bone Miner Res. 2011;26:131320. PubMed doi:10.1002/jbmr.338.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Georgopoulos NA, Theodoropoulou A, Leglise M, Vagenakis AG, Markou KB. Growth and skeletal maturation in male and female artistic gymnasts. J Clin Endocrinol Metab. 2004;89:437782. PubMed doi:10.1210/jc.2003-031864.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Greulich WW, Pyle SI. Radiographic Atlas of Skeletal Development of the Hand and Wrist. Stanford, CA: Stanford University Press; 1959.

  • 17.

    Grossfeld A. Changes during the 110 years of the world artistic gymnastics championships. Sci Gymnastics J. 2014;6:527.

  • 18.

    Gruodyte-Raciene R, Erlandson MC, Jackowski SA, Baxter Jones AD. Structural strength development at the proximal femur in 4- to 10-year-old precompetitive gymnasts: a 4-year longitudinal hip structural analysis study. J Bone Miner Res. 2013;28:2592600. PubMed doi:10.1002/jbmr.1986.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Hendriksma M, Joosten MHMA, Peters JPM, Grolman W, Stegeman I. Evaluation of the quality of reporting of observational studies in otorhinolaryngology-based on the STROBE statement. PLoS One. 2017;12:0169316. PubMed doi:10.1371/journal.pone.0169316.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Jackowski SA, Baxter-Jones ADG, Gruodyte-Raciene R, Kontulainen SA, Erlandson MC. A longitudinal study of bone area, content, density, and strength development at the radius and tibia in children 4–12 years of age exposed to recreational gymnastics. Osteoporos Int. 2015;26:167790. PubMed doi:10.1007/s00198-015-3041-1.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jemni M, Sands WA, Firieme F, Stone MH, Cooke CB. Any effect of gymnastics training on upper-body and lower-body aerobic and power components in national and international male gymnasts? J Strength Cond Res. 2006;20:899907. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Laing EM, Wilson AR, Modlesky CM, O’Connor PJ, Hall DB, Lewis RD. Initial years of recreational artistic gymnastics training improves lumbar spine bone mineral accrual in 4- to 8-year-old females. J Bone Miner Res. 2005;20:50919. PubMed doi:10.1359/JBMR.041127.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Maffulli N, King JB, Helms P. Training in élite young athletes (the Training of Young Athletes (TOYA) Study): injuries, flexibility and isometric strength. Br J Sports Med. 1994;28:12336. PubMed doi:10.1136/bjsm.28.2.123.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Markou KB, Mylonas P, Theodoropoulou A, et al. The influence of intensive physical exercise on bone acquisition in adolescent elite female and male artistic gymnasts. J Clin Endocrinol Metab. 2004;89:43837. PubMed doi:10.1210/jc.2003-031865.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Mitchell M, Muftakhidinov B, Winchen T. Engauge digitizer–digitizing software [Internet]. [cited Oct 22]. Available from: http://markummitchell.github.io/engauge-digitizer

    • Export Citation
  • 26.

    Moore SA, Moore M, Klentrou P, Sullivan P, Falk B. Maturity status in male child and adolescent athletes. J Sports Med Phys Fitness. 2010;50:48693. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Nikander R, Sievänen H, Uusi-Rasi K, Heinonen A, Kannus P. Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone. 2006;39:88694. PubMed doi:10.1016/j.bone.2006.04.005.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int. 1997;7:722. PubMed doi:10.1007/BF01623454.

  • 29.

    Panzer VP. Lower extremity loads in landings of elite gymnasts [Doctoral thesis]. Oregon: University of Oregon; 1987.

    • Export Citation
  • 30.

    Schipilow JD, Macdonald HM, Liphardt A-M, Kan M, Boyd SK. Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: an HR-pQCT study. Bone. 2013;56:2819. PubMed doi:10.1016/j.bone.2013.06.014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Vandenbroucke JP, Elm von E, Altman DG, et al. Strengthening the reporting of observational studies in epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4:e2971654. PubMed doi:10.1371/journal.pmed.0040297.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ward KA, Mughal Z, Adams JE. Tools for measuring bone in children and adolescents. In: Bone Densitometry in Growing Patients. Totowa, NJ: Humana Press; 2007, pp. 1540.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ward KA, Roberts S, Adams J, Mughal M. Bone geometry and density in the skeleton of pre-pubertal gymnasts and school children. Bone. 2005;36:10128. PubMed doi:10.1016/j.bone.2005.03.001.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Ward KA, Roberts SA, Adams JE, Lanham-New S, Mughal MZ. Calcium supplementation and weight bearing physical activity: do they have a combined effect on the bone density of pre-pubertal children? Bone. 2007;41:496504. PubMed doi:10.1016/j.bone.2007.06.007.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Weimann E, Witzel C, Schwidergall S, Böhles HJ. Peripubertal pertubations in elite gymnasts caused by sport specific training regimes and inadequate nutritional intake. Int J Sports Med. 2000;21:2105. PubMed doi:10.1055/s-2000-8875.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Zanker CL, Gannon L, Cooke CB, Gee KL, Oldroyd B, Truscott JG. Differences in bone density, body composition, physical activity, and diet between child gymnasts and untrained children 7–8 years of age. J Bone Miner Res. 2003;18:104350. PubMed doi:10.1359/jbmr.2003.18.6.1043.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 275 259 9
Full Text Views 17 17 1
PDF Downloads 14 14 2