Bouts of Vigorous Physical Activity and Bone Strength Accrual During Adolescence

Click name to view affiliation

Leigh Gabel University of British Columbia and Vancouver Coastal Health Research Institute

Search for other papers by Leigh Gabel in
Current site
Google Scholar
PubMed
Close
*
,
Heather M. Macdonald University of British Columbia and Vancouver Coastal Health Research Institute

Search for other papers by Heather M. Macdonald in
Current site
Google Scholar
PubMed
Close
*
,
Lindsay Nettlefold University of British Columbia and Vancouver Coastal Health Research Institute

Search for other papers by Lindsay Nettlefold in
Current site
Google Scholar
PubMed
Close
*
, and
Heather A. McKay University of British Columbia and Vancouver Coastal Health Research Institute

Search for other papers by Heather A. McKay in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: We examined the influence of vigorous physical activity (VPA) bout frequency on bone strength accrual across adolescence, independent of total volume of VPA. Methods: We measured VPA (6 metabolic equivalents; total volume and bout frequency <5 min in duration) annually using waist-worn accelerometers (ActiGraph GT1M) in 309 adolescents (9–20 y at baseline: 99, <13 y; 126, 13–18 y; 84, >18 y) over a maximum of 4 years. We applied finite element analysis to high-resolution peripheral quantitative computed tomography scans of the distal tibia (8% site) to estimate bone strength (failure load; F.Load, Newtons). We fit a mixed effects model with maturity offset (years from age at peak height velocity) as a random effect and sex, ethnicity, tibia length, lean body mass, and VPA (volume and bout frequency) as fixed effects. Results: VPA volume and bout frequency were positively associated with F.Load across adolescence; however, VPA volume did not predict F.Load once VPA bout frequency was included in the model. Participants in the upper quartile of VPA bout frequency (∼33 bouts per day) had 10% (500 N) greater F.Load across adolescence compared with participants in the lowest quartile (∼9 bouts per day; P = .012). Each additional daily bout of VPA was associated with 21 N greater F.Load, independent of total volume of VPA. Conclusion: Frequent VPA should be promoted for optimal bone strength accrual.

Gabel and McKay are with the Dept. of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada. Macdonald and McKay are with the Dept. of Family Practice, University of British Columbia, Vancouver, British Columbia, Canada. Nettlefold is with University of British Columbia, Vancouver, British Columbia, Canada. Gabel, Macdonald, Nettlefold, and McKay are also with the Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, British Columbia, Canada.

Address author correspondence to Heather A. McKay at heather.mckay@ubc.ca.
  • Collapse
  • Expand
  • 1.

    Anderson M, Green WT, Messner MB. Growth and predictions of growth in the lower extremities. J Bone Joint Surg Am. 45, 1963;(45-A):114. PubMed doi:10.2106/00004623-196345010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Barr SI. Associations of social and demographic variables with calcium intakes of high school students. J Am Diet Assoc. 1994;94(3):2609. PubMed doi:10.1016/0002-8223(94)90366-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Buie HR, Campbell GM, Klinck RJ, MacNeil JA, Boyd SK. Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis. Bone. 2007;41(4):50515. PubMed doi:10.1016/j.bone.2007.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Burrows M, Liu D, Perdios A, Moore S, Mulpuri K, McKay H. Assessing bone microstructure at the distal radius in children and adolescents using HR-pQCT: a methodological pilot study. J Clin Densitom. 2010;13(4):4515. PubMed doi:10.1016/j.jocd.2010.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol. 2008;3(Suppl 3):1319. doi:10.2215/CJN.04151206

  • 6.

    Crocker PR, Bailey DA, Faulkner RA, Kowalski KC, McGrath R. Measuring general levels of physical activity: preliminary evidence for the Physical Activity Questionnaire for Older Children. Med Sci Sports Exerc. 1997;29(10):13449. PubMed doi:10.1097/00005768-199710000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Curran PJ, Bauer DJ. The disaggregation of within-person and between-person effects in longitudinal models of change. Annu Rev Psychol. 2011;62:583619. PubMed doi:10.1146/annurev.psych.093008.100356

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Deere K, Sayers A, Rittweger J, Tobias JH. Habitual levels of high, but not moderate or low, impact activity are positively related to hip BMD and geometry: results from a population-based study of adolescents. J Bone Miner Res. 2012;27(9):188795. PubMed doi:10.1002/jbmr.1631

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):155765. PubMed doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Farr JN, Lee VR, Blew RM, Lohman TG, Going SB. Quantifying bone-relevant activity and its relation to bone strength in girls. Med Sci Sports Exerc. 2011;43(3):47683. PubMed doi:10.1249/MSS.0b013e3181eeb2f2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Fox KR, Cooper A, McKenna J. The school and promotion of children’s health-enhancing physical activity: perspectives from the United Kingdom. J Teach Phys Educ. 2004;23:33858. doi:10.1123/jtpe.23.4.338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Gabel L, Macdonald HM, McKay HA. Sex differences and growth-related adaptations in bone microarchitecture, geometry, density, and strength from childhood to early adulthood: a mixed longitudinal HR-pQCT study. J Bone Miner Res. 2017;32(2):25063. PubMed doi:10.1002/jbmr.2982

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Gabel L, Macdonald HM, Nettlefold L, McKay HA. Physical activity, sedentary time and bone strength from childhood to early adulthood: a mixed longitudinal HR-pQCT study. J Bone Miner Res. 2017;32(7):152536. PubMed doi:10.1002/jbmr.3115

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Gabel L, Nettlefold L, Brasher PM, et al. Reexamining the surfaces of bone in boys and girls during adolescent growth: a 12-year mixed longitudinal pQCT study. J Bone Miner Res. 2015;30(12):215867. PubMed doi:10.1002/jbmr.2570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Granados A, Gebremariam A, Lee JM. Relationship between timing of peak height velocity and pubertal staging in boys and girls. J Clin Res Pediatr Endocrinol. 2015;7(3):2357. PubMed doi:10.4274/jcrpe.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40(1):1427. PubMed doi:10.1016/j.bone.2006.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hoffman L. Longitudinal Analysis. New York, NY: Routledge; 2015.

  • 18.

    Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40. PubMed doi:10.1186/1479-5868-7-40

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Janz KF, Letuchy EM, Burns TL, Eichenberger Gilmore JM, Torner JC, Levy SM. Objectively measured physical activity trajectories predict adolescent bone strength: Iowa Bone Development Study. Br J Sports Med. 2014;48(13):10326. PubMed doi:10.1136/bjsports-2014-093574

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Janz KF, Letuchy EM, Francis SL, Metcalf KM, Burns TL, Levy SM. Objectively measured physical activity predicts hip and spine bone mineral content in children and adolescents ages 5-15 years: Iowa Bone Development Study. Front Endocrinol (Lausanne). 2014;5:112.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Järvinen TL, Sievänen H, Jokihaara J, Einhorn TA. Revival of bone strength: the bottom line. J Bone Miner Res. 2005;20(5):71720. PubMed doi:10.1359/JBMR.050211

  • 22.

    Kowalski KC, Crocker PRE, Faulkner RA. Validation of the physical activity questionnaire for older children. Pediatr Exerc Sci. 1997;9(2):17486. doi:10.1123/pes.9.2.174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Laib A, Barou O, Vico L, Lafage-Proust MH, Alexandre C, Rügsegger P. 3D micro-computed tomography of trabecular and cortical bone architecture with application to a rat model of immobilisation osteoporosis. Med Biol Eng Comput. 2000;38(3):32632. PubMed doi:10.1007/BF02347054

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Macdonald HM, Cooper DML, McKay HA. Anterior-posterior bending strength at the tibial shaft increases with physical activity in boys: evidence for non-uniform geometric adaptation. Osteoporos Int. 2009;20(1):6170. PubMed doi:10.1007/s00198-008-0636-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Macdonald HM, Kontulainen SA, Khan KM, McKay HA. Is a school-based physical activity intervention effective for increasing tibial bone strength in boys and girls? J Bone Miner Res. 2007;22(3):43446. PubMed. doi:10.1359/jbmr.061205

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Macdonald HM, Kontulainen SA, Petit MA, Beck TJ, Khan KM, McKay HA. Does a novel school-based physical activity model benefit femoral neck bone strength in pre- and early pubertal children? Osteoporos Int. 2008;19(10):144556. PubMed doi:10.1007/s00198-008-0589-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    MacKelvie KJ, McKay HA, Khan KM, Crocker PR. A school-based exercise intervention augments bone mineral accrual in early pubertal girls. J Pediatr. 2001;139(4):5018. PubMed doi:10.1067/mpd.2001.118190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    MacKelvie KJ, McKay HA, Petit MA, Moran O, Khan KM. Bone mineral response to a 7-month randomized controlled, school-based jumping intervention in 121 prepubertal boys: associations with ethnicity and body mass index. J Bone Miner Res. 2002;17(5):83444. PubMed doi:10.1359/jbmr.2002.17.5.834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    MacKelvie KJ, Petit MA, Khan KM, Beck TJ, McKay HA. Bone mass and structure are enhanced following a 2-year randomized controlled trial of exercise in prepubertal boys. Bone. 2004;34(4):75564. PubMed doi:10.1016/j.bone.2003.12.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29(10):1096105. PubMed doi:10.1016/j.medengphy.2006.11.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Macneil JA, Boyd SK. Bone strength at the distal radius can be estimated from high-resolution peripheral quantitative computed tomography and the finite element method. Bone. 2008;42(6):120313. PubMed doi:10.1016/j.bone.2008.01.017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Martin R, Murtagh E. Active Classrooms: a cluster randomized controlled trial evaluating the effects of a movement integration intervention on the physical activity levels of primary school children. J Phys Act Health. 2017;14(4):290300. doi:10.1123/jpah.2016-0358

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Mattocks C, Ness A, Leary S, et al. Use of accelerometers in a large field-based study of children: protocols, design issues, and effects on precision. J Phys Act Health. 2008;5(Suppl 1):S98111. doi:10.1123/jpah.5.s1.s98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    McKay HA, Macdonald HM, Nettlefold L, Masse LC, Day M, Naylor PJ. Action Schools! BC implementation: from efficacy to effectiveness to scale-up. Br J Sports Med. 2015;49(4):2108. PubMed doi:10.1136/bjsports-2013-093361

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    McKay HA, MacLean L, Petit M, et al. “Bounce at the Bell”: a novel program of short bouts of exercise improves proximal femur bone mass in early pubertal children. Br J Sports Med. 2005;39(8):5216. PubMed doi:10.1136/bjsm.2004.014266

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Moore SA, McKay HA, Macdonald H, et al. Enhancing a somatic maturity prediction model. Med Sci Sports Exerc. 2015;47(8):175564. PubMed doi:10.1249/MSS.0000000000000588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Nikander R, Sievänen H, Heinonen A, Daly RM, Uusi-Rasi K, Kannus P. Targeted exercise against osteoporosis: a systematic review and meta-analysis for optimising bone strength throughout life. BMC Med. 2010;8:47. PubMed doi:10.1186/1741-7015-8-47

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25(4):88290. PubMed

    • Search Google Scholar
    • Export Citation
  • 39.

    Pauchard Y, Liphardt AM, Macdonald HM, Hanley DA, Boyd SK. Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography. Bone. 2012;50(6):130410. PubMed doi:10.1016/j.bone.2012.03.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S197239. PubMed doi:10.1139/apnm-2015-0663

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Pouliot-Laforte A, Veilleux LN, Rauch F, Lemay M. Validity of an accelerometer as a vertical ground reaction force measuring device in healthy children and adolescents and in children and adolescents with osteogenesis imperfecta type I. J Musculoskelet Neuronal Interact. 2014;14(2):15561. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Robling AG, Burr DB, Turner CH. Recovery periods restore mechanosensitivity to dynamically loaded bone. J Exp Biol. 2001;204(Pt 19):338999. PubMed

  • 43.

    Robling AG, Hinant FM, Burr DB, Turner CH. Improved bone structure and strength after long-term mechanical loading is greatest if loading is separated into short bouts. J Bone Miner Res. 2002;17(8):154554. PubMed doi:10.1359/jbmr.2002.17.8.1545

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Rowlands AV, Stiles VH. Accelerometer counts and raw acceleration output in relation to mechanical loading. J Biomech. 2012;45(3):44854. PubMed doi:10.1016/j.jbiomech.2011.12.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Rubin CT, Lanyon LE. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am. 1984;66(3):397402. PubMed doi:10.2106/00004623-198466030-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Sayers A, Mattocks C, Deere K, Ness A, Riddoch C, Tobias JH. Habitual levels of vigorous, but not moderate or light, physical activity is positively related to cortical bone mass in adolescents. J Clin Endocrinol Metab. 2011;96(5):E793802. PubMed doi:10.1210/jc.2010-2550

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Schipilow JD, Macdonald HM, Liphardt AM, Kan M, Boyd SK. Bone micro-architecture, estimated bone strength, and the muscle-bone interaction in elite athletes: an HR-pQCT study. Bone. 2013;56(2):2819. PubMed doi:10.1016/j.bone.2013.06.014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Tan VPS, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, McKay HA. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014;29(10):216181. PubMed doi:10.1002/jbmr.2254

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Tanner JM. Foetus into Man. Cambridge, UK: Harvard Press; 1978.

  • 50.

    Tremblay MS, Carson V, Chaput JP, et al. Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S31127. PubMed doi:10.1139/apnm-2016-0151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Trost SG, Loprinzi PD, Moore R, Pfeiffer KA. Comparison of accelerometer cut points for predicting activity intensity in youth. Med Sci Sports Exerc. 2011;43(7):13608. PubMed doi:10.1249/MSS.0b013e318206476e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Turner CH, Owan I, Takano Y. Mechanotransduction in bone: role of strain rate. Am J Physiol. 1995;269(3 Pt 1):E43842. PubMed

  • 53.

    Turner CH, Robling AG. Designing exercise regimens to increase bone strength. Exerc Sport Sci Rev. 2003;31(1):4550. PubMed doi:10.1097/00003677-200301000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Umemura Y, Ishiko T, Yamauchi T, Kurono M, Mashiko S. Five jumps per day increase bone mass and breaking force in rats. J Bone Miner Res. 1997;12(9):14805. PubMed doi:10.1359/jbmr.1997.12.9.1480

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2280 525 23
Full Text Views 57 17 4
PDF Downloads 41 9 2