Structural Strength Benefits Observed at the Hip of Premenarcheal Gymnasts Are Maintained Into Young Adulthood 10 Years After Retirement From the Sport

Click name to view affiliation

Marta C. Erlandson University of Saskatchewan

Search for other papers by Marta C. Erlandson in
Current site
Google Scholar
PubMed
Close
*
,
Shonah B. Runalls University of Saskatchewan

Search for other papers by Shonah B. Runalls in
Current site
Google Scholar
PubMed
Close
*
,
Stefan A. Jackowski University of Saskatchewan

Search for other papers by Stefan A. Jackowski in
Current site
Google Scholar
PubMed
Close
*
,
Robert A. Faulkner University of Saskatchewan

Search for other papers by Robert A. Faulkner in
Current site
Google Scholar
PubMed
Close
*
, and
Adam D.G. Baxter-Jones University of Saskatchewan

Search for other papers by Adam D.G. Baxter-Jones in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: Premenarcheal female gymnasts have been consistently found to have greater bone mass and structural advantages. However, little is known about whether these structural advantages are maintained after the loading stimulus is removed. Therefore, the purpose of this study was to investigate the structural properties at the hip after long-term retirement from gymnastics. Methods: Structural properties were derived from dual-energy X-ray absorptiometry scans using the hip structural analysis program for the same 24 gymnasts and 21 nongymnasts both in adolescence (8–15 y) and adulthood (22–30 y). Structural measures were obtained at the narrow neck, intertrochanter, and femoral shaft and included cross-sectional area, section modulus, and buckling ratio. Multivariate analysis of covariance was used to assess differences between groups in bone measures while controlling for size, age, maturity, and physical activity. Results: Gymnasts were found to have structural advantages at the narrow neck in adolescence (16% greater cross-sectional area, 17% greater section modulus, and 25% lower buckling ratio) and 14 years later (13% greater cross-sectional area and 26% lower buckling ratio). Benefits were also found at the intertrochanter and femoral shaft sites in adolescence and adulthood. Conclusion: Ten years after retirement from gymnastics, former gymnasts’ maintained significantly better hip bone structure than females who did not participate in gymnastics during growth.

Erlandson, Runalls, Jackowski, Faulkner, and Baxter-Jones are with the College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.

Address author correspondence to Marta C. Erlandson at marta.erlandson@usask.ca.
  • Collapse
  • Expand
  • 1.

    Allison SJ, Folland JP, Rennie WJ, Summers GD, Brooke-Wavell K. High impact exercise increased femoral neck bone mineral density in older men: a randomised unilateral intervention. Bone. 2013;53(2):3218. PubMed doi:10.1016/j.bone.2012.12.045

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Arceo-Mendoza RM, Camacho P. Prediction of fracture risk in patients with osteoporosis: a brief review. Womens Health (Lond Engl). 2015;11(4):47784. doi:10.2217/WHE.15.14

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bailey DA. The Saskatchewan Pediatric Bone Mineral Accrual Study: bone mineral acquisition during the growing years. Int J Sports Med. 1997;18 Suppl 3:1914. doi:10.1055/s-2007-972713

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bass S, Pearce G, Bradney M, Hendrich E, Delmas PD, Harding A, Seeman E. Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. J Bone Miner Res. 1998;13(3):5007. PubMed doi:10.1359/jbmr.1998.13.3.500

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Beck T. Measuring the structural strength of bones with dual-energy X-ray absorptiometry: principles, technical limitations, and future possibilities. Osteoporos Int. 2003;14:818.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Beck TJ. Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep. 2007;5(2):4955. PubMed doi:10.1007/s11914-007-0002-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Beck TJ. Hip Structural Analysis (HSA) Program (BMD and Structural Geometry Methodology). Baltimore, MD: Department of Radiology, School of Medicine, Johns Hopkins Medical Institute; 2002.

    • Search Google Scholar
    • Export Citation
  • 8.

    Beck TJ, Ruff CB, Warden KE, Scott WW, Rao GU. Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol. 1990;25(1):618.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Bonjour JP, Chevalley T, Ferrari S, Rizzoli R. The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Publica Mex. 2009;51 Suppl 1:S517. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bonnick SL. HAS: beyond BMD with DXA. Bone. 2007;41 1 suppl 1:S912. PubMed doi:10.1016/j.bone.2007.03.007

  • 11.

    Bonnick SL. Noninvasive assessments of bone strength. Curr Opin Endocrinol Diabetes Obes. 2007;14(6):4517. PubMed doi:10.1097/MED.0b013e3282f154a7

  • 12.

    Chevalley T, Bonjour JP, Ferrari S, Rizzoli R. Pubertal timing and body mass index gain from birth to maturity in relation with femoral neck BMD and distal tibia microstructure in healthy female subjects. Osteoporos Int. 2011;22(10):268998. PubMed doi:10.1007/s00198-011-1531-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Copeland JL, Kowalski KC, Donen RM, Tremblay MS. Convergent validity of the physical activity questionnaire for adults: the new member of the PAQ family. J Phys Act Health. 2005;2(2):21629. doi:10.1123/jpah.2.2.216

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Crocker PR, Bailey DA, Faulkner RA, Kowalski KC, McGrath R. Measuring general levels of physical activity: preliminary evidence for the physical activity questionnaire for older children. Med Sci Sports Exerc. 1997;29(10):13449. PubMed doi:10.1097/00005768-199710000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Daly RM, Rich PA, Klein R, Bass S. Effects of high-impact exercise on ultrasonic and biochemical indices of skeletal status: a prospective study in young male gymnasts. J Bone Miner Res. 1999;14(7):122230. PubMed doi:10.1359/jbmr.1999.14.7.1222

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Damon A, Bajema CJ. Age at menarche: accuracy of recall after thirty-nine years. Hum Biol. 1974;46(3):3814. PubMed

  • 17.

    Deere K, Sayers A, Rittweger J, Tobias JH. Habitual levels of high, but not moderate or low, impact activity are positively related to hip BMD and geometry: results from a population-based study of adolescents. J Bone Miner Res. 2012;27(9):188795. PubMed doi:10.1002/jbmr.1631

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Erlandson MC, Kontulainen SA, Baxter-Jones AD. Precompetitive and recreational gymnasts have greater bone density, mass, and estimated strength at the distal radius in young childhood. Osteoporos Int. 2011;22(1):7584. PubMed doi:10.1007/s00198-010-1263-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones AD. Former premenarcheal gymnasts exhibit site-specific skeletal benefits in adulthood after long-term retirement. J Bone Miner Res. 2012;27(11):2298305. PubMed doi:10.1002/jbmr.1689

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Erlandson MC, Kontulainen SA, Chilibeck PD, Arnold CM, Faulkner RA, Baxter-Jones AD. Higher premenarcheal bone mass in elite gymnasts is maintained into young adulthood after long-term retirement from sport: a 14-year follow-up. J Bone Miner Res. 2012;27(1):10410. PubMed doi:10.1002/jbmr.514

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Eser P, Hill B, Ducher G, Bass S. Skeletal benefits after long-term retirement in former elite female gymnasts. J Bone Miner Res. 2009;24(12):19818. PubMed doi:10.1359/jbmr.090521

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Farr JN, Amin S, Melton LJ, et al. Bone strength and structural deficits in children and adolescents with a distal forearm fracture resulting from mild trauma. J Bone Miner Res. 2014;29(3):5909. PubMed doi:10.1002/jbmr.2071

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Faulkner RA, Forwood MR, Beck TJ, Mafukidze JC, Russell K, Wallace W. Strength indices of the proximal femur and shaft in prepubertal female gymnasts. Med Sci Sports Exerc. 2003;35(3):5138. PubMed doi:10.1249/01.MSS.0000053724.33480.8B

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Gruodyte-Raciene R, Erlandson MC, Jackowski SA, Baxter-Jones AD. Structural strength development at the proximal femur in 4- to 10-year-old precompetitive gymnasts: a 4-year longitudinal hip structural analysis study. J Bone Miner Res. 2013;28(12):2592600. PubMed doi:10.1002/jbmr.1986

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Gunter K, Baxter-Jones AD, Mirwald RL, Almstedt H, Fuchs RK, Durski S, Snow C. Impact exercise increases BMC during growth: an 8-year longitudinal study. J Bone Miner Res. 2008;23(7):98693. PubMed doi:10.1359/jbmr.071201

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Hopkins RB, Burke N, Von Keyserlingk C, et al. The current economic burden of illness of osteoporosis in Canada. Osteoporos Int. 2016;27(10):302332. PubMed doi:10.1007/s00198-016-3631-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Janz KF, Letuchy EM, Eichenberger Gilmore JM, Burns TL, Torner JC, Willing MC, Levy SM. Early physical activity provides sustained bone health benefits later in childhood. Med Sci Sports Exerc. 2010;42(6):10728. PubMed doi:10.1249/MSS.0b013e3181c619b2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Khoo BC, Beck TJ, Qiao QH, et al. In vivo short-term precision of hip structure analysis variables in comparison with bone mineral density using paired dual-energy X-ray absorptiometry scans from multi-center clinical trials. Bone. 2005;37(1):11221. PubMed doi:10.1016/j.bone.2005.03.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Kirchner EM, Lewis RD, O’Connor PJ. Effect of past gymnastics participation on adult bone mass. J Appl Physiol. 1996;80(1):22632. PubMed doi:10.1063/1.362808

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Kowalski KC, Crocker PRE, Faulkner RA. Validation of the physical activity questionnaire for older children. Pediatr Exerc Sci. 1997;9:17486. doi:10.1123/pes.9.2.174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    LaCroix AZ, Beck TJ, Cauley JA, et al. Hip structural geometry and incidence of hip fracture in postmenopausal women: what does it add to conventional bone mineral density? Osteoporos Int. 2010;21(6):91929. PubMed doi:10.1007/s00198-009-1056-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Laing EM, Massoni JA, Nickols-Richardson SM, Modlesky CM, O’Connor PJ, Lewis RD. A prospective study of bone mass and body composition in female adolescent gymnasts. J Pediatr. 2002;141(2):2116. PubMed doi:10.1067/mpd.2002.126599

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Laing EM, Wilson AR, Modlesky CM, O’Connor PJ, Hall DB, Lewis RD. Initial years of recreational artistic gymnastics training improves lumbar spine bone mineral accrual in 4- to 8-year-old females. J Bone Miner Res. 2005;20(3):50919. PubMed doi:10.1359/JBMR.041127

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Martin RB, Burr DB. Non-invasive measurement of long bone cross-sectional moment of inertia by photon absorptiometry. J Biomech. 1984;17(3):195201. PubMed doi:10.1016/0021-9290(84)90010-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Nickols-Richardson SM, Modlesky CM, O’Connor PJ, Lewis RD. Premenarcheal gymnasts possess higher bone mineral density than controls. Med Sci Sports Exerc. 2000;32(1):639. PubMed doi:10.1097/00005768-200001000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Nikander R, Sievänen H, Uusi-Rasi K, Heinonen A, Kannus P. Loading modalities and bone structures at nonweight-bearing upper extremity and weight-bearing lower extremity: a pQCT study of adult female athletes. Bone. 2006;39(4):88694. PubMed doi:10.1016/j.bone.2006.04.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ. A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res. 2002;17(3):36372. PubMed doi:10.1359/jbmr.2002.17.3.363

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Pollock NK, Laing EM, Modlesky CM, O’Connor PJ, Lewis RD. Former college artistic gymnasts maintain higher BMD: a nine-year follow-up. Osteoporos Int. 2006;17(11):16917. PubMed doi:10.1007/s00198-006-0181-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Puntila E, Kröger H, Lakka T, Tuppurainen M, Jurvelin J, Honkanen R. Leisure-time physical activity and rate of bone loss among peri- and postmenopausal women: a longitudinal study. Bone. 2001;29(5):4426. PubMed doi:10.1016/S8756-3282(01)00597-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Robling AG, Castillo AB, Turner CH. Biomechanical and molecular regulation of bone remodeling. Annu Rev Biomed Eng. 2006;8(1):45598. doi:10.1146/annurev.bioeng.8.061505.095721

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Scerpella TA, Bernardoni B, Wang S, Rathouz PJ, Li Q, Dowthwaite JN. Site-specific, adult bone benefits attributed to loading during youth: a preliminary longitudinal analysis. Bone. 2016;85:14859. PubMed doi:10.1016/j.bone.2016.01.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Slemenda CW, Miller JZ, Hui SL, Reister TK, Johnston CC. Role of physical activity in the development of skeletal mass in children. J Bone Miner Res. 1991;6(11):122733. PubMed doi:10.1002/jbmr.5650061113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Stewart A, Marfell-Jones M; International Society for Advancement of Kinanthropometry. International Standards for Anthropometric Assessment. Sydney, AustraliaInternational Society for the Advancement of Kinanthropometry; 2011, p. 115.

    • Search Google Scholar
    • Export Citation
  • 44.

    Tobias JH, Gould V, Brunton L, Deere K, Rittweger J, Lipperts M, Grimm B. Physical activity and bone: may the force be with you. Front Endocrinol (Lausanne). 2014;5:20. PubMed doi:10.3389/fendo.2014.00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Zanker CL, Gannon L, Cooke CB, Gee KL, Oldroyd B, Truscott JG. Differences in bone density, body composition, physical activity, and diet between child gymnasts and untrained children 7-8 years of age. J Bone Miner Res. 2003;18(6):104350. PubMed doi:10.1359/jbmr.2003.18.6.1043

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Zanker CL, Osborne C, Cooke CB, Oldroyd B, Truscott JG. Bone density, body composition and menstrual history of sedentary female former gymnasts, aged 20-32 years. Osteoporos Int. 2004;15(2):14554. PubMed doi:10.1007/s00198-003-1524-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    2013 ISCD Official Positions–Pediatric [Internet]. Middletown, CT: International Society for Clinical Densitometry (ISCD); 2013 [cited 2017 May 13]. Available from: https://www.iscd.org/official-positions/2013-iscd-official-positions-pediatric/

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1724 374 10
Full Text Views 24 15 5
PDF Downloads 23 7 0