Impact of Martial Arts (Judo, Karate, and Kung Fu) on Bone Mineral Density Gains in Adolescents of Both Genders: 9-Month Follow-Up

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: To compare bone mineral density (BMD) gains in adolescents of both genders stratified according to different martial art styles in a 9-month follow-up study. Methods: The longitudinal study consisted of 29 adolescents of both genders and age between 11 and 17 years stratified into a control group (not engaged in any sport) and 50 fighters (kung fu/karate, n = 29; judo, n = 21). All 79 subjects underwent anthropometric measures (weight, height, leg length, and height set) and dual-energy X-ray absorptiometry (BMD, in g/cm2) at 2 moments, baseline and 9 months later. Maturity offset (age at peak height velocity), lean soft tissue, chronological age, and resistance training were treated as covariates. Results: Male judoists presented higher gains in BMD-spine [0.098 g/cm2 (95% confidence interval, 0.068–0.128)] than control group [0.040 g/cm2 (95% confidence interval, 0.011–0.069)] (post hoc test with P = .030). There was no effect of martial art on BMD gains among girls. Independently of gender, in all multivariate models, lean soft tissue constituted the most relevant covariate. Conclusions: Judo practice in adolescents affected the bone accrual significantly after 9-month follow-up compared with controls, mainly in boys.

Ito and Agostinete are with the Laboratory of InVestigation in Exercise (LIVE), Dept. of Physical Education, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil. Kemper is with the Dept. of Occupational Health, EMGO+ Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands. Agostinete, Christofaro, and Fernandes are with the Post-Graduation Program in Physical Therapy, Dept. of Physical Therapy, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil. Lynch, Christofaro, and Fernandes are with the Post-Graduation Program in Kinesiology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro, São Paulo, Brazil. Ronque is with Post-Graduation Program in Physical Education, Center of Physical Education and Sports, Londrina State University (UEL), Londrina, Paraná, Brazil.

Address author correspondence to Igor H. Ito at hidekincubus@yahoo.com.br.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Agostinete RRLynch KRGobbo LAet al. Basketball affects bone mineral density accrual in boys more than swimming and other impact sports: 9-mo follow-up. J Clin Densitom. 2016;19(3):37581. PubMed doi:10.1016/j.jocd.2016.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Andreoli AMonteleone MVan Loan MPromenzio LTarantino UDe Lorenzo A. Effects of different sports on bone density and muscle mass in highly trained athletes. Med Sci Sports Exerc. 2001;33(4):50711. PubMed doi:10.1097/00005768-200104000-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Bakker ITwisk JWVan Mechelen WKemper HC. Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women. J Clin Endocrinol Metab. 2003;88(6):260713. PubMed doi:10.1210/jc.2002-021538

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bakker ITwisk JWVan Mechelen WRoos JCKemper HC. Ten-year longitudinal relationship between physical activity and lumbar bone mass in (young) adults. J Bone Miner Res. 2003;18(2):32532. PubMed doi:10.1359/jbmr.2003.18.2.325

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bass SLSaxon LDaly RMet al. The effect of mechanical loading on the size and shape of bone in pre-, peri-, and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17(12):227480. PubMed doi:10.1359/jbmr.2002.17.12.2274

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Courteix DValente-dos-Santos JFerry Bet al. Multilevel approach of a 1-year program of dietary and exercise interventions on bone mineral content and density in metabolic syndrome: the RESOLVE randomized controlled trial. PLoS One. 2015;10(9):0136491. PubMed doi:10.1371/journal.pone.0136491

    • Search Google Scholar
    • Export Citation
  • 7.

    Demorest RAKoutures C; Council on Sports Medicine and Fitness. Youth participation and injury risk in martial arts. Pediatrics. 2016;138(6):e20163022. PubMed doi:10.1542/peds.2016-3022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Ducher GDaly RMBass SL. Effects of repetitive loading on bone mass and geometry in young male tennis players: a quantitative study using MRI. J Bone Miner Res. 2009;24(10):168692. PubMed doi:10.1359/jbmr.090415

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Ducher GTournaire NMeddahi-Pellé ABenhamou CLCourteix D. Short-term and long-term site-specific effects of tennis playing on trabecular and cortical bone at the distal radius. J Bone Miner Metab. 2006;24(6):48490. PubMed doi:10.1007/s00774-006-0710-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Elloumi MBen Ounis OCourteix Det al. Long-term rugby practice enhances bone mass and metabolism in relation with physical fitness and playing position. J Bone Miner Metab. 2009;27(6):71320. PubMed doi:10.1007/s00774-009-0086-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gordon CCChumlea WCRoche AF. Stature, recumbent length and weight. In: Lohman TGRoche AFMartorell R editors. Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics; 1988 pp. 38.

    • Search Google Scholar
    • Export Citation
  • 12.

    Gracia-Marco LRey-López JPSantaliestra-Pasías AMJiménez-Pavón DDíaz LEMoreno LAVicente-Rodríguez G. Sedentary behaviours and its association with bone mass in adolescents: the HELENA cross-sectional study. BMC Public Health. 2012;12:971. PubMed doi:10.1186/1471-2458-12-971

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Hind KBurrows M. Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone. 2007;40(1):1427. PubMed doi:10.1016/j.bone.2006.07.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hinrichs TChae EHLehmann RAllolio BPlaten P. Bone mineral density in athletes of different disciplines: a cross-sectional study. Open Sports Sci J. 2010;3(2):12933. doi:10.2174/1875399X01003010129

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Hopkins WGMarshall SWBatterham AMHanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ito IHMantovani AMAgostinete RRet al. Practice of martial arts and bone mineral density in adolescents of both sexes. Rev Paul Pediatr. 2016;34(2):2105. PubMed doi:10.1016/j.rpped.2015.09.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Karlsson MKRosengren BE. Training and bone: from health to injury. Scand J Med Sci Sports. 2012;22(4):e1523. PubMed doi:10.1111/j.1600-0838.2012.01461.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kemper HC. Physical activity, physical fitness and bone health. In: Amstrong Nvan Mechelen W editors. Paediatric Exercise Science and Medicine. Oxford, UK: Oxford University Press; 2008 pp. 36572.

    • Search Google Scholar
    • Export Citation
  • 19.

    Kim PSShin YHNoh SKJung HLLee CDKang HY. Beneficial effects of judo training on bone mineral density of high-school boys in Korea. Biol Sport. 2013;30(4):2959. PubMed doi:10.5604/20831862.1077556

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kim YSPaik IYRhie YJSuh SH. Integrative physiology: defined novel metabolic roles of osteocalcin. J Korean Med Sci. 2010;25(7):98591. PubMed doi:10.3346/jkms.2010.25.7.985

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Klentrou P. Influence of exercise and training on critical stages of bone growth and development. Pediatr Exerc Sci. 2016;28(2):17886. PubMed doi:10.1123/pes.2015-0265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Kohrt WMBloomfield SALittle KDNelson MEYingling VR; American College of Sports Medicine. American College of Sports Medicine position stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36(11):198596. PubMed doi:10.1249/01.MSS.0000142662.21767.58

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kriemler SZahner LPuder JJet al. Weight-bearing bones are more sensitive to physical exercise in boys than in girls during pre- and early puberty: a cross-sectional study. Osteoporos Int. 2008;19(12):174958. PubMed doi:10.1007/s00198-008-0611-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Leite MPadrão PMoreira P. Nutritional intake and bone mineral density in female adolescents. Acta Med Port. 2007;20(4):299306. PubMed

  • 25.

    Lynch KRKemper HCTuri-Lynch Bet al. Impact sports and bone fractures among adolescents [published online ahead of print December 27 2016]. J Sports Sci. doi:10.1080/02640414.2016.1272708

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Maher JMMarkey JCEbert-May D. The other half of the story: effect size analysis in quantitative research. CBE Life Sci Educ. 2013;12(3):34551. PubMed doi:10.1187/cbe.13-04-0082

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Malina RMKozieł SM. Validation of maturity offset in a longitudinal sample of Polish boys. J Sports Sci. 2014;32(5):42437. PubMed doi:10.1080/02640414.2013.828850

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Malina RMKozieł SM. Validation of maturity offset in a longitudinal sample of Polish girls. J Sports Sci. 2014;32(14):137482. PubMed doi:10.1080/02640414.2014.889846

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Meyer URomann MZahner Let al. Effect of a general school-based physical activity intervention on bone mineral content and density: a cluster-randomized controlled trial. Bone. 2011;48(4):7927. PubMed doi:10.1016/j.bone.2010.11.018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Mirwald RLBaxter-Jones ADBailey DABeunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):68994. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Patton GCHemphill SABeyers JMet al. Pubertal stage and deliberate self-harm in adolescents. J Am Acad Child Adolesc Psychiatry. 2007;46(4):50814. PubMed doi:10.1097/chi.0b013e31803065c7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Prouteau SPelle ACollomp KBenhamou LCourteix D. Bone density in elite judoists and effects of weight cycling on bone metabolic balance. Med Sci Sports Exerc. 2006;38(4):694700. PubMed doi:10.1249/01.mss.0000210207.55941.fb

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Ribeiro-Dos-Santos MRLynch KRAgostinete RRet al. Prolonged practice of swimming is negatively related to bone mineral density gains in adolescents. J Bone Metab. 2016;23(3):14955. PubMed doi:10.11005/jbm.2016.23.3.149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Rizzoli RBianchi MLGarabédian MMcKay HAMoreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294305. PubMed doi:10.1016/j.bone.2009.10.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Shea MKBooth SL. Update on the role of vitamin K in skeletal health. Nutr Rev. 2008;66(10):54957. PubMed doi:10.1111/j.1753-4887.2008.00106.x

  • 36.

    Strong WBMalina RMBlimkie CJet al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146(6):7327. PubMed doi:10.1016/j.jpeds.2005.01.055

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Vaitkeviciute DLatt EMaestu Jet al. Physical activity and bone mineral accrual in boys with different body mass parameters during puberty: a longitudinal study. PLoS ONE. 2014;9(10):e107759. PubMed doi:10.1371/journal.pone.0107759

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wells JCKHaroun DWilliams JDet al. Evaluation of DXA against the four-component model of body composition in obese children and adolescents aged 5–21 years. Int J Obes (Lond). 2010;34(4):64955. doi:10.1038/ijo.2009.249

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wong WWHergenroeder ACStuff JEButte NFSmith EOEllis KJ. Evaluating body fat in girls and female adolescents: advantages and disadvantages of dual-energy X-ray absorptiometry. Am J Clin Nutr. 2002;76(2):3849. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Yard EEKnox CLSmith GAComstock RD. Pediatric martial arts injuries presenting to emergency departments, United States 1990–2003. J Sci Med Sport. 2007;10(4):21926. PubMed doi:10.1016/j.jsams.2006.06.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Zetaruk MNViolán MAZurakowski DMicheli LJ. Injuries in martial arts: a comparison of five styles. Br J Sports Med. 2005;39(1):2933. PubMed doi:10.1136/bjsm.2003.010322

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 76 76 30
Full Text Views 2 2 0
PDF Downloads 2 2 0
Altmetric Badge
PubMed
Google Scholar