The Impact of Training Load on Bone Mineral Density of Adolescent Swimmers: A Structural Equation Modeling Approach

Click name to view affiliation

Ricardo Ribeiro Agostinete São Paulo State University (UNESP)

Search for other papers by Ricardo Ribeiro Agostinete in
Current site
Google Scholar
PubMed
Close
*
,
Santiago Maillane-Vanegas São Paulo State University (UNESP)

Search for other papers by Santiago Maillane-Vanegas in
Current site
Google Scholar
PubMed
Close
*
,
Kyle R. Lynch São Paulo State University (UNESP)

Search for other papers by Kyle R. Lynch in
Current site
Google Scholar
PubMed
Close
*
,
Bruna Turi-Lynch São Paulo State University (UNESP)

Search for other papers by Bruna Turi-Lynch in
Current site
Google Scholar
PubMed
Close
*
,
Manuel J. Coelho-e-Silva University of Coimbra

Search for other papers by Manuel J. Coelho-e-Silva in
Current site
Google Scholar
PubMed
Close
*
,
Eduardo Zapaterra Campos Federal University of Pernambuco

Search for other papers by Eduardo Zapaterra Campos in
Current site
Google Scholar
PubMed
Close
*
,
Suziane Ungari Cayres São Paulo State University (UNESP)

Search for other papers by Suziane Ungari Cayres in
Current site
Google Scholar
PubMed
Close
*
, and
Romulo Araújo Fernandes São Paulo State University (UNESP)

Search for other papers by Romulo Araújo Fernandes in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To investigate the mediating effect of muscle mass on the relationship between training load and bone density in adolescent swimmers. Methods: A cross-sectional study involving 87 control and 22 swimmers aged 10–19 years (overall sample: n = 109). Swimmers had a minimum of 1 year of competition in regional and national championships, and control adolescents reported 1 year without any organized sport. Bone density was the main outcome (dual-energy X-ray absorptiometry), which was measured in upper limbs, lower limbs, spine, and whole body. Monthly training load was the independent variable, while the mediation effect of lean soft tissue was assessed. Maturity offset, age, inflammation, and vitamin D intake were treated as covariates. Results: Swimmers had lower bone density than controls; there was a significant and positive relationship between training load and muscle mass. In boys, training load presented a negative correlation with bone density in lower limbs [r = −.293; 95% confidence interval (CI), −.553 to −.034]. In girls, training load was negatively related to bone mineral density in lower limbs (r = .563; 95% CI, −.770 to −.356) and whole body (r = −.409; 95% CI, −.609 to −.209). Conclusion: Training load had a negative relationship on bone density of swimmers of both sexes, independently of the positive effect of lean soft tissue on bone density.

Agostinete, Maillane-Vanegas, Lynch, Turi-Lynch, Cayres, and Fernandes are with the Laboratory of InVestigation in Exercise (LIVE), Dept. of Physical Education, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil. Coelho-e-Silva is with the CIDAF (UID/DTP/04213/2016), Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal. Campos is with the Dept. of Physical Education, Federal University of Pernambuco, Recife, Pernambuco, Brazil.

Address author correspondence to Ricardo Ribeiro Agostinete at ricardoagostinete@gmail.com.
  • Collapse
  • Expand
  • 1.

    Agostinete RR, Lynch KR, Gobbo LA, et al. Basketball affects bone mineral density accrual in boys more than swimming and other impact sports: 9-mo follow-up. J Clin Densitom. 2016;19:37581. PubMed doi:10.1016/j.jocd.2016.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Akgül S, Kanbur N, Cinemre S¸A, Karabulut E, Derman O. The effect of swimming and type of stroke on bone metabolism in competitive adolescent swimmers: a pilot study. Turk J Med Sci. 2015;45(4):82732. PubMed doi:10.3906/sag-1408-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Basterfield L, Reilly JK, Pearce MS, et al. Longitudinal associations between sports participation, body composition and physical activity from childhood to adolescence. J Sci Med Sport. 2015;18(2):17882. PubMed doi:10.1016/j.jsams.2014.03.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Beach ML, Whitney SL, Dickoff-Hoffman S. Relationship of shoulder flexibility, strength, and endurance to shoulder pain in competitive swimmers. J Orthop Sports Phys Ther. 1992;16(6):2628. PubMed doi:10.2519/jospt.1992.16.6.262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bielemann RM, Martinez-Mesa J, Gigante DP. Physical activity during life course and bone mass: a systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet Disord. 2013;14(1):77. doi:10.1186/1471-2474-14-77

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bixler B, Riewald S. Analysis of a swimmer’s hand and arm in steady flow conditions using computational fluid dynamics. J Biomech. 2002;35(5):7137. PubMed doi:10.1016/S0021-9290(01)00246-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Campos EZ, Nordsborg NB, Silva ASRD, et al. The response of the lactate minimum test to a 12-week swimming training. Motriz Rev Educ Fis. 2014;20(3):28691. doi:10.1590/S1980-65742014000300007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Capranica L, Millard-Stafford ML. Youth sport specialization: how to manage competition and training. Int J Sports Physiol Perform. 2011;6(4):5729. PubMed doi:10.1123/ijspp.6.4.572

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Faulkner G, Zeglen L, Leatherdale S, Manske S, Stone M. The relationship between school physical activity policy and objectively measured physical activity of elementary school students: a multilevel model analysis. Arch Public Health. 2014;72(1):20. PubMed doi:10.1186/2049-3258-72-20

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Ferry B, Duclos M, Burt L, et al. Bone geometry and strength adaptations to physical constraints inherent in different sports: comparison between elite female soccer players and swimmers. J Bone Miner Metab. 2011;29(3):34251. PubMed doi:10.1007/s00774-010-0226-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Ferry B, Lespessailles E, Rochcongar P, Duclos M, Courteix D. Bone health during late adolescence: effects of an 8-month training program on bone geometry in female athletes. Joint Bone Spine. 2013;80(1):5763. PubMed doi:10.1016/j.jbspin.2012.01.006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Foster C, Florhaug JA, Franklin J, et al. A new approach to monitoring exercise training. J Strength Cond Res. 2001;15(1):10915. PubMed

  • 13.

    Gomez-Bruton A, Montero-Marín J, González-Agüero A, et al. The effect of swimming during childhood and adolescence on bone mineral density: a systematic review and meta-analysis. Sports Med. 2016;46(3):36579. PubMed doi:10.1007/s40279-015-0427-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Gómez-Bruton A, González-Agüero A, Gómez-Cabello A, Matute-Llorente A, Casajús J, Vicente-Rodríguez G. The effects of swimming training on bone tissue in adolescence. Scand J Med Sci Sports. 2015;25(6):589602. doi:10.1111/sms.12378

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Gordon CM. Run, jump, and be merry: how much exercise is needed for building young bones? J Bone Miner Res. 2014;29(6):13224. PubMed doi:10.1002/jbmr.2264

  • 16.

    Gourgoulis V, Boli A, Aggeloussis N, et al. The effect of leg kick on sprint front crawl swimming. J Sports Sci. 2014;32(3):27889. PubMed doi:10.1080/02640414.2013.823224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ho-Pham LT, Nguyen UD, Nguyen TV. Association between lean mass, fat mass, and bone mineral density: a meta-analysis. J Clin Endocrinol Metab. 2014;99(1):308. PubMed doi:10.1210/jc.2013-3190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Kemper H. Physical activity, physical fitness and bone health. In: Armstrong N, Van Mechelen W, editors. Paediatric Exercise Science and Medicine. Oxford: Oxford University Press; 2000, pp. 26572.

    • Search Google Scholar
    • Export Citation
  • 19.

    Kluemper M, Uhl T, Hazelrigg H. Effect of stretching and strengthening shoulder muscles on forward shoulder posture in competitive swimmers. J Sport Rehabil. 2006;15(1):5870. doi:10.1123/jsr.15.1.58

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR; American College of Sports Medicine. American College of Sports Medicine position stand: physical activity and bone health. Med Sci Sports Exerc. 2004;36(11):198596. PubMed doi:10.1249/01.MSS.0000142662.21767.58

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lynch KR, Kemper HC, Turi-Lynch B, et al. Impact sports and bone fractures among adolescents [published online ahead of print December 27, 2016]. J Sports Sci. PubMed doi:10.1080/02640414.2016.1272708

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Lynch SS, Thigpen CA, Mihalik JP, Prentice WE, Padua D. The effects of an exercise intervention on forward head and rounded shoulder postures in elite swimmers. Br J Sports Med. 2010;44(5):37681. PubMed doi:10.1136/bjsm.2009.066837

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Magkos F, Kavouras SA, Yannakoulia M, Karipidou M, Sidossi S, Sidossis LS. The bone response to non-weight-bearing exercise is sport-, site-, and sex-specific. Clin J Sport Med. 2007;17(2):1238. PubMed doi:10.1097/JSM.0b013e318032129d

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Malina RM, Bouchard C, Bar-Or O. Growth, Maturation, and Physical Activity. Champaign: Human Kinetics; 2004.

  • 25.

    Malina RM, Choh AC, Czerwinski SA, Chumlea WC. Validation of maturity offset in the FELS longitudinal study. Pediatr Exerc Sci. 2016;28(3):43955. PubMed doi:10.1123/pes.2015-0090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Man PW, van der Meer IM, Lips P, Middelkoop BJ. Vitamin D status and bone mineral density in the Chinese population: a review. Arch Osteoporos. 2016;11(1):14. doi:10.1007/s11657-016-0265-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Mantovani AM, Duncan S, Codogno JS, Lima MCS, Fernandes RA. Different amounts of physical activity measured by pedometer and the associations with health outcomes in adults. J Phys Act Health. 2016;13(11):118391. PubMed doi:10.1123/jpah.2015-0730

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    McGuigan MR, Al Dayel A, Tod D, Foster C, Newton RU, Pettigrew S. Use of session rating of perceived exertion for monitoring resistance exercise in children who are overweight or obese. Pediatr Exerc Sci. 2008;20(3):33341. PubMed doi:10.1123/pes.20.3.333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):68994. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Nemet D, Oh Y, Kim H-S, Hill M, Cooper DM. Effect of intense exercise on inflammatory cytokines and growth mediators in adolescent boys. Pediatrics. 2002;110(4):6819. PubMed doi:10.1542/peds.110.4.681

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nikander R, Kannus P, Rantalainen T, Uusi-Rasi K, Heinonen A, Sievänen H. Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int. 2010;21(10):168794. PubMed doi:10.1007/s00198-009-1101-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nikander R, Sievänen H, Heinonen A, Karstila T, Kannus P. Load-specific differences in the structure of femoral neck and tibia between world-class moguls skiers and slalom skiers. Scand J Med Sci Sports. 2008;18(2):14553. PubMed doi:10.1111/j.1600-0838.2007.00643.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Papoti M, Martins LE, Cunha SA, Zagatto AM, Gobatto CA. Effects of taper on swimming force and swimmer performance after an experimental ten-week training program. J Strength Cond Res. 2007;21(2):53842. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Pate RR, Pratt M, Blair SN, et al. Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273(5):4027. PubMed doi:10.1001/jama.1995.03520290054029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Pedersen BK, Febbraio M. Muscle-derived interleukin-6—a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain Behav Immun. 2005;19(5):3716. PubMed doi:10.1016/j.bbi.2005.04.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Pyne DB, Sharp RL. Physical and energy requirements of competitive swimming events. Int J Sport Nutr Exerc Metab. 2014;24(4):3519. PubMed doi:10.1123/ijsnem.2014-0047

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Rauch F, Schoenau E. The developing bone: slave or master of its cells and molecules? Pediatr Res. 2001;50(3):30914. PubMed doi:10.1203/00006450-200109000-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ribeiro-Dos-Santos MR, Lynch KR, Agostinete RR, et al. Prolonged practice of swimming is negatively related to bone mineral density gains in adolescents. J Bone Metab. 2016;23(3):14955. PubMed doi:10.11005/jbm.2016.23.3.149

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Rincon M. Interleukin-6: from an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 2012;33(11):5717. PubMed doi:10.1016/j.it.2012.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Sabiston CM, Castonguay A, Low NC, et al. Vigorous physical activity and low-grade systemic inflammation in adolescent boys and girls. Int J Pediatr Obes. 2010;5(6):50915. PubMed doi:10.3109/17477160903572019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Schleihauf RE. A hydrodynamic analysis of swimming propulsion. In: Terauds J, Bedingfield EW, editors. Swimming III. Baltimore: University Park Press; 1979, pp. 70109.

    • Search Google Scholar
    • Export Citation
  • 42.

    Schoenau E, Neu M, Manz F. Muscle mass during childhood—relationship to skeletal development. J Musculoskelet Neuronal Interact. 2004;4(1):1058. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Scovazzo ML, Browne A, Pink M, Jobe FW, Kerrigan J. The painful shoulder during freestyle swimming. An electromyographic cinematographic analysis of twelve muscles. Am J Sports Med. 1991;19(6):57782. PubMed doi:10.1177/036354659101900604

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Sein ML, Walton J, Linklater J, et al. Shoulder pain in elite swimmers: primarily due to swim-volume-induced supraspinatus tendinopathy. Br J Sports Med. 2010;44(2):10513. PubMed doi:10.1136/bjsm.2008.047282

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Taaffe DR, Marcus R. Regional and total body bone mineral density in elite collegiate male swimmers. J Sports Med Phys Fitness. 1999;39(2):1549. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Tenforde AS, Fredericson M. Influence of sports participation on bone health in the young athlete: a review of the literature. PM&R. 2011;3(9):8617. doi:10.1016/j.pmrj.2011.05.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Vicente-Rodriguez G, Dorado C, Ara I, et al. Artistic versus rhythmic gymnastics: effects on bone and muscle mass in young girls. Int J Sports Med. 2007;28(5):38693. doi:10.1055/s-2006-924397

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Vicente-Rodriguez G, Jimenez-Ramirez J, Ara I, Serrano-Sanchez J, Dorado C, Calbet J. Enhanced bone mass and physical fitness in prepubescent footballers. Bone. 2003;33(5):8539. PubMed doi:10.1016/j.bone.2003.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Wu CH, Yao WJ, Lu FH, Yang YC, Wu JS, Chang CJ. Sex differences of body fat distribution and cardiovascular dysmetabolic factors in old age. Age Ageing. 2001;30(4):3316. PubMed doi:10.1093/ageing/30.4.331

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Yanai T. Rotational effect of buoyancy in frontcrawl: does it really cause the legs to sink? J Biomech. 2001;34(2):23543. PubMed doi:10.1016/S0021-9290(00)00186-X

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2869 721 86
Full Text Views 84 22 6
PDF Downloads 54 9 1