Commentary on the Assessment and Interpretation of Pediatric Aerobic Fitness—The Year That Was 2017

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Three papers, which between them contribute to the current debate on the assessment and interpretation of pediatric aerobic fitness, were selected for commentary. The first paper (Children. 2017; 4:6; doi:10.3390/children4010006) highlights the merits of clinical exercise testing and advocates the advancement of pediatric exercise testing through a rationale founded on demonstrated prognostic value of data obtained. It notes the lack of well-accepted definitions of exercise outcome variables in children and promotes the case for data harmonization across laboratories. The second paper (J Appl Physiol. 2017; 122: 997–1002) argues persuasively that the acceptance of peak oxygen uptake (peak V˙O2) at the termination of an exercise test to voluntary exhaustion as a surrogate for a “true” maximal value (ie, V˙O2max) is no longer tolerable. The authors present a compelling case for the adoption of a follow-up verification test to unambiguously validate the achievement of V˙O2max. The third paper (Br J Sports Med. 2017; 1–10, doi:10.1136/bjsports-2017-097982) compiles large, previously published datasets to provide a review of temporal trends in 20-m shuttle run test scores. The authors assert that temporal trends in 20-m shuttle run test performance provide meaningful insight into trends in population health. The commentary stresses the importance of scientific rigor in pediatric exercise testing, emphasizes the use of precise definitions when describing health-related variables, and cautions against the misuse of exercise outcome measures in recommendations relating to or impacting on young people’s health and well-being.

Armstrong is with the Children’s Health and Exercise Research Centre, University of Exeter, Exeter, United Kingdom.

Address author correspondence to Neil Armstrong at N.Armstrong@exeter.ac.uk.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Armstrong N. Pediatric aerobic fitness and trainability. Pediatr Exerc Sci. 2017;29:813. PubMed doi:10.1123/pes.2017-0012

  • 2.

    Armstrong N. Top 10 research questions related to youth aerobic fitness. Res Q Exerc Sport. 2017;88:13048. PubMed doi:10.1080/02701367.2017.1303298

  • 3.

    Armstrong NMcManus AM. Aerobic fitness. In: Armstrong Nvan Mechelen W editors. Oxford Textbook of Children’s Sport and Exercise Medicine. Oxford, UK: Oxford University Press; 2017 pp. 16180.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong NTomkinson GREkelund U. Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth. Br J Sports Med. 2011;45:84958. PubMed doi:10.1136/bjsports-2011-090200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Barker ARWilliams CAJones AMArmstrong N. Establishing maximal oxygen uptake in young people during a ramp test to exhaustion. Br J Sports Med. 2011;45:498503. PubMed doi:10.1136/bjsm.2009.063180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Batista MBCyrino ESArruda Met al. Validity of equations for estimating peak V˙O2 from the 20-m shuttle run test in adolescents aged 11–13 years. J Strength Cond Res. 2013;27:277481. PubMed doi:10.1519/JSC.0b013e3182815724

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Batista MBRomanzini CLPCastro-Pinero JRonque ERV. Validity of field tests to estimate cardiorespiratory fitness in children and adolescents: a systematic review. Rev Paul Pediatr. 2017;35:22233. PubMed doi:10.1590/1984-0462/;2017;35;2;00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bhammar DMStickford JLBernhardt VBabb TG. Verification of maximal oxygen uptake in obese and nonobese children. Med Sci Sports Exerc. 2017;49:70210. PubMed doi:10.1249/MSS.0000000000001170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    de Almeida Santana CCFarah BQde Azevedo LBet al. Associations between cardiorespiratory fitness and overweight with academic performance in 12-year-old Brazilian children. Pediatr Exerc Sci. 2017;29:2207. PubMed doi:10.1123/pes.2016-0048

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Harrison CBGill NDKinugasa TKilding AE. Development of aerobic fitness in young team sport athletes. Sports Med. 2015;45:96983. PubMed doi:10.1007/s40279-015-0330-y

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Higino WPSorroche ASFalqueiro PGMLima YCSHiga CL. Determination of aerobic performance in youth soccer players: effect of direct and indirect methods. J Hum Kinet. 2017;56:10918. PubMed doi:10.1515/hukin-2017-0028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Katch VL. Use of the oxygen-body weight ratio in correlational analyses: spurious correlations and statistical considerations. Med Sci Sports. 1973;5:2527. PubMed

    • Search Google Scholar
    • Export Citation
  • 13.

    Lang JJBelanger KPoitras VJanssen ITomkinson GTremblay MS. Systematic review of the relationship between 20 m shuttle run performance and health indicators among children and youth. J Sci Med Sport. In Press 2017. doi:10.1016/j.jsams.2017.08.002

    • Search Google Scholar
    • Export Citation
  • 14.

    Lang JJTremblay MSLeger LOlds TTomkinson GR. International variability in 20 m shuttle run performance in children and youth: who are the fittest from a 50-country comparison? A systematic literature review with pooling of aggregate results. Br J Sports Med. E-pub ahead of print 2017. doi:10.1136/bjsports-2016-096224

    • Search Google Scholar
    • Export Citation
  • 15.

    Lang JJTremblay MSOrtega FBRuiz JRTomkinson GR. Review of criterion-referenced standards for cardiorespiratory fitness: what percentage of 1 142 026 international children and youth are apparently healthy? Br J Sports Med. E-pub ahead of print. 2017. doi:10.1136/bjsports-2016-096955

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Loftin MSothern MAbe TBonis M. Expression of V˙O2peak in children and youth with special reference to allometric scaling. Sports Med. 2016;46:145160. PubMed doi:10.1007/s40279-016-0536-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Luz CRodrigues LPDe Meester ACordovil R. The relationship between motor competence and health-related fitness in children and adolescents. PLoS ONE. 2017;12:0179993. PubMed doi:10.1371/journal.pone.0179993

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Mayorga-Vega DAguiler-Soto PViciana J. Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: a meta-analysis. J Sports Sci Med. 2015;14:53647. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Mora-Gonzalez JCadenas-Sanchez CMartinez-Tellez BSanchez-Delgado GRuiz JRLéger LOrtega FB. Estimating V˙O2 max in children aged 5–6 years through the preschool-adapted 20-m shuttle-run test (PREFIT). Eur J Appl Physiol. 2017;117:2295307. PubMed doi:10.1007/s00421-017-3717-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Moran CAPeccin MSBombig MTPereira SADal Corso S. Performance and reproducibility on shuttle run test between obese and non-obese children: a cross-sectional study. BMC Pediatr. 2017;17:68. PubMed doi:10.1186/s12887-017-0825-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Noonan RJBoddy LMKnowles ZRFairclough SJ. Fitness, fatness and active school commuting among Liverpool school children. Int J Environ Res Public Health. 2017;14:995. doi:10.3390/ijerph14090995

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Oliveira TPizarro ACosta MFernandes LSilva GMota JRibeiro JC. Cardiorespiratory fitness, but not physical activity, is associated with academic achievement in children and adolescents. Ann Hum Biol. 2017;44:30915. PubMed doi:10.1080/03014460.2017.1308010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Pianosi PTLiem RIMcMurray RGCerny FJFalk BKemper HCG. Pediatric exercise testing: value and implications of peak oxygen uptake. Children. 2017;4:6. doi:10.3390/children4010006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Poole DCJones AM. Measurement of the maximum oxygen uptake V˙O2max:V˙O2peak is no longer acceptable. J Appl Physiol. 2017;122:9971002. PubMed doi:10.1152/japplphysiol.01063.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Ratel SWilliams CA. Neuromuscular fatigue. In: Armstrong Nvan Mechelen W editors. Oxford Textbook of Children’s Sport and Exercise Medicine. 3rd ed. Oxford, UK: Oxford University Press; 2017 pp. 12131.

    • Search Google Scholar
    • Export Citation
  • 26.

    Robben KEPoole DCHarms CA. Maximal oxygen uptake validation in children with expiratory flow limitation. Pediatr Exerc Sci. 2013;25:84100. PubMed doi:10.1123/pes.25.1.84

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Rowland TW. Evolution of maximal oxygen uptake in children. Med Sport Sci. 2007;50:2009. PubMed doi:10.1159/000101392

  • 28.

    Rowland TW editor. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign, IL: Human Kinetics; 2017.

  • 29.

    Sasayama KAdachi M. Tracking of clustered metabolic syndrome risk factor in Japanese children: 3-year follow-up study. J Phys Fitness Sports Med. 2017;6:26772. doi:10.7600/jpfsm.6.267

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Tanner JM. Fallacy of per-weight and per-surface area standards and their relation to spurious correlation. J Appl Physiol. 1949;2:115. PubMed doi:10.1152/jappl.1949.2.1.1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Tomkinson GRCarver KDAtkinson Fet al. European normative values for physical fitness in children and adolescents aged 9–17 years: results from 2 779 165 Eurofit performances representing 30 countries. Br J Sports Med. E-pub ahead of print 2017. doi:10.1136/bjsports-2017-098253

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Tomkinson GRLang JJTremblay M. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper middle-income countries between 1981 and 2014. Br J Sports Med. E-pub ahead of print 2017. doi:10.1136/bjsports-2017-097982

    • Search Google Scholar
    • Export Citation
  • 33.

    Tomkinson GRLang JJTremblay Met al. International normative 20 m shuttle run values from 1 142 026 children and youth representing 50 countries. Br J Sports Med. 2017;51:154554. PubMed doi:10.1136/bjsports-2016-095987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Welsman JRArmstrong N. Interpreting exercise performance data in relation to body size. In: Armstrong Nvan Mechelen W editors. Pediatric Exercise Science and Medicine. 2nd ed. Oxford, UK: Oxford University Press; 2008 pp. 1322.

    • Search Google Scholar
    • Export Citation
  • 35.

    Welsman JRBywater KFarr CWelford DArmstrong N. Reliability of peak V˙O2 and maximal cardiac output assessed using thoracic bioimpedance in children. Eur J Appl Physiol. 2005;94:22834. PubMed doi:10.1007/s00421-004-1300-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Winter EM. Scaling: partitioning differences in size. Pediatr Exerc Sci. 1992;4:296301. doi:10.1123/pes.4.4.296

Article Metrics
All Time Past Year Past 30 Days
Abstract Views 48 48 15
Full Text Views 15 15 2
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar