Assessing Differences in Cardiorespiratory Fitness With Respect to Maturity Status in Highly Trained Youth Soccer Players

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Purpose: The purpose of the study was to examine differences in measures of cardiorespiratory fitness and determinants of running economy with respect to maturity status in a group of highly trained youth soccer players. Methods: A total of 21 highly trained youth soccer players participated in this study. On separate visits, players’ peak oxygen uptake (VO2peak), running economy at 3 different speeds [8 km·h−1, 80% gaseous exchange threshold (GET), and 95% GET], and pulmonary oxygen uptake (VO2) kinetics were determined. Players also performed a Yo-Yo intermittent recovery test level 1 (Yo-Yo IR1). Players were categorized as either “pre-PHV” (peak height velocity) or “mid-PHV” group using the measure of maturity offset. Independent t tests and Cohen’s d effect sizes were then used to assess differences between groups. Results: The mid-PHV group was significantly taller, heavier, and advanced in maturity status. Absolute measures of VO2peak were greater in the mid-PHV group; however, when expressed relative to body mass, fat-free mass, and theoretically derived exponents, VO2peak values were similar between groups. Pre-PHV group presented a significantly reduced VO2 response, during relative submaximal running speeds, when theoretically derived exponents were used, or expressed as %VO2peak. VO2 kinetics (tau) were faster during a low (standing) to moderate (95% GET) transition in the pre-PHV group. Yo-Yo IR1 performance was similar between groups. Conclusion: Although measures of VO2peak and Yo-Yo IR1 performance are shown to be similar between groups, those categorized as pre-PHV group display a superior running economy at relative submaximal running speeds and faster taus during a low to moderate exercise transition than their more mature counterparts.

Doncaster is with the Dept. of Sport & Physical Activity, Faculty of Sciences, Edge Hill University, Ormskirk, United Kingdom. Iga is with the Performance Services, Huddersfield Town FC, Huddersfield, United Kingdom. Unnithan is with the School of Science & Sport, University of the West of Scotland, Paisley, United Kingdom.

Address author correspondence to Greg Doncaster at doncasg@edgehill.ac.uk.
  • 1.

    Armstrong N. Pediatric aerobic fitness and trainability. Pediatr Exerc Sci. 2017;29(1):8–13. PubMed doi:10.1123/pes.2017-0012

  • 2.

    Armstrong N, Welsman J. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc Sport Sci Rev. 1994;22(1):435–76. PubMed

  • 3.

    Armstrong N, Welsman J. Peak oxygen uptake in relation to growth and maturation in 11- to 17-year-old humans. Eur J Appl Physiol. 2001;85(6):546–51. PubMed doi:10.1007/s004210100485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong N, Welsman J, Nevill AM, Kirby BJ. Modelling growth and maturation changes in peak oxygen uptake in 11–13 yr olds. J Appl Physiol. 1999;87(6):2230–6. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Astorino T, Robergs R, Ghiasvand F, Marks D, Burns S. Incidence of the oxygen plateau at VO2peak during exercise testing to volitional exhaustion. J Exerc Physiol Online. 2000;3(4):1–12.

    • Search Google Scholar
    • Export Citation
  • 6.

    Bangsbo J, Iaia M, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):37–51. PubMed doi:10.2165/00007256-200838010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Buchheit M, Laursen PB, Ahmaidi S. Effect of prior exercise on pulmonary O2 uptake and estimated muscle capillary blood flow kinetics during moderate intensity field running in men. J Appl Physiol. 2009;107(2):460–70. PubMed doi:10.1152/japplphysiol.91625.2008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Cooke C. Maximal oxygen uptake, economy and efficiency. In: Eston R, Reilly T, editors. Kinanthropometry and Exercise Physiology Laboratory Manual: Tests, Procedures and Data. 3rd ed. London, UK: Routledge; 2009, pp. 174–212.

    • Search Google Scholar
    • Export Citation
  • 9.

    Cunha G, Lorenzi T, Sapata K, Lopes AL, Gaya AC, Oliveira Á. Effect of biological maturation on maximal oxygen uptake and ventilatory thresholds in soccer players: an allometric approach. J Sports Sci. 2011;29(10):1029–39. PubMed doi:10.1080/02640414.2011.570775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cunha G, Vaz M, Geremia J, Leites GT, Baptista RR, Lopes AL, Reischak-Oliveira Á. Maturity status does not exert effects on aerobic fitness in soccer players after appropriate normalization for body size. Pediatr Exerc Sci. 2016;28:456–65. PubMed doi:10.1123/pes.2015-0133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Deprez D, Buchheit M, Fransen J, Pion J, Lenoir M, Philippaerts RM, Vaeyens R. A longitudinal study investigating the stability of anthropometry and soccer-specific endurance in pubertal high-level youth soccer players. J Sports Sci Med. 2015;14(2):418–26. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Deprez D, Coutts A, Fransen J, Deconinck F, Lenoir M, Vaeyens R, Philippaerts R. Relative age, biological maturation and anaerobic characteristics in elite youth soccer players. Int J Sports Med. 2013;34:897–903. PubMed doi:10.1055/s-0032-1333262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Deprez D, Coutts A, Lenoir M, Fransen J, Pion J, Philippaerts R, Vaeyens R. Reliability and validity of the Yo-Yo intermittent recovery test level 1 in young soccer players. J Sports Sci. 2014;32(10):903–10. PubMed doi:10.1080/02640414.2013.876088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Doncaster G, Marwood S, Iga J, Unnithan V. Influence of oxygen kinetics on physical performance in youth soccer. Eur J Appl Physiol. 2016;116(9):1781–94. PubMed doi:10.1007/s00421-016-3431-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Fawkner S, Armstrong N, Childs DJ, Welsman JR. Reliability of the visually identified ventilatory threshold and V-slope method in children. Pediatr Exerc Sci. 2002;14(2):181–92. doi:10.1123/pes.14.2.181

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Gellish R, Goslin B, Olson R, McDonald A, Russi GD, Moudgil VK. Longitudinal modelling of the relationship between age and maximal heart rate. Med Sci Sports Exerc. 2007;39(5):822–9. PubMed doi:10.1097/mss.0b013e31803349c6

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Gil S, Badiola A, Bidaurrazaga-Letona I, et al. Relationship between the relative age effect and anthropometry, maturity and performance in young soccer players. J Sports Sci. 2014;32(5):479–86. PubMed doi:10.1080/02640414.2013.832355

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hui D, Jackson R. Uncertainty in allometric exponent estimation: a case study in scaling metabolic rate with body mass. J Theor Biol. 2007;249(1):168–77. PubMed doi:10.1016/j.jtbi.2007.07.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Iaia FM, Rampinini E, Bangsbo J. High-intensity training in football. Int J Sports Physiol Perform. 2009;4(3):291–306. PubMed

  • 20.

    Iga J, Scott M, George K, Drust B. Seasonal changes in multiple indices of body composition in professional football players. Int J Sports Med. 2014;35(12):994–8. PubMed doi:10.1055/s-0034-1371833

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jones AM, Doust J. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J Sports Sci. 1996;14(4):321–7. PubMed

  • 22.

    Jones AM, Poole DC. Introduction to oxygen uptake kinetics. In: Jones AM, Poole DC, editors. Oxygen Uptake Kinetics in Sport, Exercise and Medicine. London, UK: Routledge; 2005, pp. 3–35.

    • Search Google Scholar
    • Export Citation
  • 23.

    LeClair E, Berthoin S, Borel B, Thevenet D, Carter H, Baquet G, Mucci P. Faster pulmonary oxygen uptake kinetics in children vs adults due to enhancements in oxygen delivery and extraction. Scand J Med Sci Sports. 2013;23(6):705–12. PubMed doi:10.1111/j.16000838.2012.01446.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Le Gall F, Carling C, Williams M, Reilly T. Anthropometric and fitness characteristics of international, professional and amateur male graduate soccer players from an elite youth academy. J Sci Med Sport. 2010;13:90–5. PubMed doi:10.1016/j.jsams.2008.07.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Loftin M, Sothern M, Bonis M. Expression of VO2peak in children and youth with special reference to allometric scaling. Sports Med. 2016;46:1451–60. PubMed doi:10.1007/s40279-016-0536-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lovell R, Towlson C, Parkin G, Portas M, Vaeyens R, Cobley S. Soccer player characteristics in English lower-league development programmes: the relationships between relative age, maturation, anthropometry and physical fitness. PLoS ONE. 2015;10(9):0137238. PubMed doi:10.1371/journal.pone.0137238

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Malina R, Eisenmann JC, Cumming SP, Ribeiro B, Aroso J. Maturity-associated variation in the growth and functional capacities of youth football (soccer) players 13–15 years. Eur J Appl Physiol. 2004;91:555–62. PubMed doi:10.1007/s00421-003-0995-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Marfell-Jones M, Olds T, Stewart A, Carter L. International Standards for Anthropometric Assessment. Potchefstroom, South Africa: International Society for the Advancement of Kinanthropometry; 2006, pp. 1–137.

    • Search Google Scholar
    • Export Citation
  • 29.

    Marwood S, Roche D, Rowland T, Garrard M, Unnithan VB. Faster pulmonary oxygen uptake kinetics in trained versus untrained male adolescents. Med Sci Sports Exerc. 2010;42(1):127–34. PubMed doi:10.1249/MSS.0b013e3181af20d0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Matsudo S, Matsudo V. Self-assessment and physician assessment of sexual maturation in Brazilian boys and girls: concordance and reproducibility. Am J Hum Biol. 1994;6:451–5. PubMed doi:10.1002/ajhb.1310060406

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mirwald R, Baxter-Jones A, Bailey D, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94. PubMed doi:10.1097/00005768-200204000-00020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Morgan D, Craib M. Physiological aspects of running economy. Med Sci Sports Exerc. 1992;24(4):456–61. PubMed

  • 33.

    Ratel S, Duche P, Williams C. Muscle fatigue during high intensity exercise in children. Sports Med. 2006;36(12):1031–65. PubMed doi:10.2165/00007256-200636120-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Segers V, De Clercq D, Janssens M, Bourgois J, Philippaerts R. Running economy in early and late maturing youth soccer players does not differ. Br J Sports Med. 2008;42:289–94. PubMed doi:10.1136/bjsm.2007.035915

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Siri W. The gross composition of the body. Adv Biol Med Phys. 1956;4:239–80. PubMed

  • 36.

    Tanner J. Growth at Adolescence. 2nd ed. Oxford, UK: Blackwell Scientific; 1962.

  • 37.

    Unnithan V, Roche D, Garrard M, Holloway K, Marwood S. Oxygen uptake kinetics in trained adolescent females. Eur J Appl Phys. 2015;115(1):213–20. PubMed doi:10.1007/s00421-014-3005-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Unnithan V, White J, Georgiou A, Iga J, Drust B. Talent identification in youth soccer. J Sports Sci. 2012;30(15):1719–26. PubMed doi:10.1080/02640414.2012.731515

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Whipp B, Rossiter H. The kinetics of oxygen uptake: physiological inferences from the parameters. In: Jones AM, Poole DC, editors. Oxygen Uptake Kinetics in Sport, Exercise and Medicine. London, UK: Routledge; 2005, pp. 62–94.

    • Search Google Scholar
    • Export Citation
  • 40.

    Williams C, Carter H, Jones AM, Doust JH. Oxygen uptake kinetics during treadmill running in boys and men. J Appl Physiol. 2001;90(5):1700–6. PubMed

  • 41.

    Wrigley R, Drust B, Stratton G, Atkinson G, Gregson W. Long-term soccer-specific training enhances the rate of physical development of academy soccer players independent of maturation status. Int J Sports Med. 2014;35(13):1090–4. PubMed doi:10.1055/s-0034-1375616

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 112 112 9
Full Text Views 8 8 0
PDF Downloads 2 2 0