Acute Compensatory Responses to Interrupting Prolonged Sitting With Intermittent Activity in Preadolescent Children

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Purpose: The purpose of this study was to compare the effects of intermittent activity performed at varying intensities and of prolonged sitting on physical activity compensation. Methods: A total of 33 children (14 boys and 19 girls; age 7–11 y; 24% overweight/obese; 61% nonwhite) completed 4 experimental conditions in random order: 8 hours of sitting interrupted with 20 two-minute low-, moderate-, or high-intensity activity breaks or 20 two-minute sedentary computer game breaks. Physical activity energy expenditure (PAEE) was assessed via accelerometry to establish baseline PAEE and throughout each condition day (8-h in-lab PAEE, out-of-lab PAEE, and 3-d postcondition). Results: Compared with baseline PAEE, total daily PAEE was significantly higher during the high-intensity condition day (153 ± 43 kcal, P = .03), unchanged during the low-intensity (−40 ± 23 kcal, P > .05) and moderate-intensity condition days (−11 ± 18 kcal, P > .05), and decreased in response to prolonged sitting (−79 ± 22 kcal, P = .03). There were no significant differences in PAEE 3-day postcondition across conditions (P > .05). Conclusion: Despite the varying levels of PAEE accumulated during the 8-hour laboratory conditions, out-of-lab PAEE during each condition day and 3-day postcondition did not change from the baseline. These findings provide preliminary evidence that spontaneous physical activity in children does not change in response to intermittent activity or prolonged sitting.

O’Sullivan, Nagy, Block, Tooley, and Hasson are with the Childhood Disparities Research Laboratory, University of Michigan, Ann Arbor, MI. O’Sullivan, Nagy, Robinson, Colabianchi, and Hasson are with the School of Kinesiology, University of Michigan, Ann Arbor, MI. Hasson is also with the School of Public Health, University of Michigan, Ann Arbor, MI.

Address author correspondence to Rebecca E. Hasson at hassonr@umich.edu.
  • 1.

    Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27(7):1033–41. PubMed doi:10.1249/00005768-199507000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Barkley JE, Epstein LH, Roemmich JN. Reinforcing value of interval and continuous physical activity in children. Physiol Behav. 2009;98(1–2):31–6. PubMed doi:10.1016/j.physbeh.2009.04.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437–50. PubMed doi:10.1123/jpah.10.3.437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Dale D, Corbin CB, Dale KS. Restricting opportunities to be active during school time: do children compensate by increasing physical activity levels after school? Res Q Exerc Sport. 2000;71(3):240–8. PubMed doi:10.1080/02701367.2000.10608904

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65. PubMed doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Gomersall SR, Rowlands AV, English C, Maher C, Olds TS. The ActivityStat hypothesis: the concept, the evidence and the methodologies. Sports Med. 2013;43(2):135–49. PubMed doi:10.1007/s40279-012-0008-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Goodman A, Mackett RL, Paskins J. Activity compensation and activity synergy in British 8–13 year olds. Prev Med. 2011;53(4–5):293–8. PubMed doi:10.1016/j.ypmed.2011.07.019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Gribbon A, McNeil J, Jay O, Tremblay MS, Chaput JP. Active video games and energy balance in male adolescents: a randomized crossover trial. Am J Clin Nutr. 2015;101:1126–34. PubMed doi:10.3945/ajcn.114.105528

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Hill JO, Peters JC, Wyatt HR. Using the energy gap to address obesity: a commentary. J Am Diet Assoc. 2009;109(11):1848–53. PubMed doi:10.1016/j.jada.2009.08.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Karvonen MJ, Kentala E, Mustala O. The effects of training on heart rate; a longitudinal study. Ann Med Exp Biol Fenn. 1957;35(3):307–15. PubMed

  • 11.

    Kim Y, Beets MW, Welk GJ. Everything you wanted to know about selecting the “right” Actigraph accelerometer cut-points for youth, but…: a systematic review. J Sci Med Sport. 2012;15(4):311–21. PubMed doi:10.1016/j.jsams.2011.12.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Kriemler S, Hebestreit H, Mikami S, et al. Impact of a single exercise bout on energy expenditure and spontaneous physical activity of obese boys. Pediatr Res. 1999;46(1):40–4. PubMed doi:10.1203/00006450-199907000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Kriemler S, Zahner L, Schindler C, et al. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340:785. doi:10.1136/bmj.c785

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Mei Z, Grummer-Strawn LM, Pietrobelli A, Goulding A, Goran MI, Dietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am J Clin Nutr. 2002;75(6):978–85. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Rideout VJ, Foehr UG, Roberts DF. Generation M2: Media in the Lives of 8-18-Year Olds. A Kaiser Family Foundation Study. Menlo Park, CA: Henry J. Kaiser Family Foundation, 2010, p. 2.

    • Search Google Scholar
    • Export Citation
  • 16.

    Ridley K, Ainsworth BE, Olds TS. Development of a compendium of energy expenditures for youth. Int J Behav Nutr Phys Act. 2008;5:45. PubMed doi:10.1186/1479-5868-5-45

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Rowland TW. The biological basis of physical activity. Med Sci Sports Exerc. 1998;30(3):392–9. PubMed doi:10.1097/00005768-199803000-00009

  • 18.

    Saunders TJ, Chaput J-P, Goldfield GS, et al. Children and youth do not compensate for an imposed bout of prolonged sitting by reducing subsequent food intake or increasing physical activity levels: a randomised cross-over study. Br J Nutr. 2014;111(4):747–54. PubMed doi:10.1017/S000711451300295X

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Stone MR, Rowlands AV, Middlebrooke AR, Jawis MN, Eston RG. The pattern of physical activity in relation to health outcomes in boys. Int J Pediatr Obes. 2009;4(4):306–15. doi:10.3109/17477160902846179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Troiano RP. Large-scale applications of accelerometers: new frontiers and new questions. Med Sci Sports Exerc. 2007;39(9):1501. PubMed doi:10.1097/mss.0b013e318150d42e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 86 86 4
Full Text Views 7 7 1
PDF Downloads 7 7 2