Defining Accelerometer Nonwear Time to Maximize Detection of Sedentary Time in Youth

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: The present study examined various accelerometer nonwear definitions and their impact on detection of sedentary time using different ActiGraph models, filters, and axes. Methods: In total, 61 youth (34 children and 27 adolescents; aged 5–17 y) wore a 7164 and GT3X+ ActiGraph on a hip-worn belt during a 90-minute structured sedentary activity. Data from GT3X+ were downloaded using the Normal filter (N) and low-frequency extension (LFE), and vertical axis (V) and vector magnitude (VM) counts were examined. Nine nonwear definitions were applied to the 7164 model (V), GT3X+LFE (V and VM), and GT3X+N (V and VM), and sedentary estimates were computed. Results: The GT3X+LFE-VM was most sensitive to movement and could accurately detect observed sedentary time with the shortest nonwear definition of 20 minutes of consecutive “0” counts for children and 40 minutes for adolescents. The GT3X+N-V was least sensitive to movement and required longer definitions to detect observed sedentary time (40 min for children and 90 min for adolescents). VM definitions were 10 minutes shorter than V definitions. LFE definitions were 40 minutes shorter than N definitions in adolescents. Conclusion: Different nonwear definitions are needed for children and adolescents and for different model-filter-axis types. Authors need to consider nonwear definitions when comparing prevalence rates of sedentary behavior across studies.

Cain, Bonilla, Conway, Geremia, Mignano, Kerr, and Sallis are with the Dept. of Family Medicine and Public Health, University of California, San Diego, CA. Schipperijn is with the Research Unit for Active Living, Dept. of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark.

Address author correspondence to Kelli L. Cain at kcain@ucsd.edu.
Pediatric Exercise Science
Article Sections
References
  • 1.

    ActiGraph R&D and Software Departments. ActiLife 5: User’s manual. Pensacola, FL: ActiGraph. 2011 [cited 2017 Oct 24]. Available from: http://dl.theactigraph.com/ActiLife5-PUB10DOC10-H.pdf

    • Export Citation
  • 2.

    Alhassan SRobinson TN. Objectively measured physical activity and cardiovascular disease risk factors in African American girls. Ethn Dis. 2008;18(4):4216. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Audrey SBell SHughes RCampbell R. Adolescent perspectives on wearing accelerometers to measure physical activity in population-based trials. Eur J Public Health. 2012;23(3):47580. doi:10.1093/eurpub/cks081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Brychta RJKlonoff MMcMahon GCet al. Influence of Actigraph filter settings on detecting low and high intensity movements. Proceedings of the International Congress on Physical Activity and Public Health; May 2010. Toronto (Canada).

    • Export Citation
  • 5.

    Cain KLConway TLAdams MAHusak LESallis JF. Comparison of older and newer generations of ActiGraph accelerometers with the normal filter and the low frequency extension. Int J Behav Nutr Phys Act. 2013;10:51. PubMed doi:10.1186/1479-5868-10-51

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Cain KLGeremia CM. Accelerometer data collection and scoring manual for adult & senior studies [Internet]. San Diego, CA: San Diego State University; 2012 [cited 2017 Oct 24]. Available from: http://www.ipenproject.org/documents/methods_docs/Accelerometer_Data_Collection_and_Scoring_Manual_Updated_June2012.pdf

    • Export Citation
  • 7.

    Cain KLSallis JFConway TLVan Dyck DCalhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10:43750. PubMed doi:10.1123/jpah.10.3.437

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Chen KYBassett DR. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37 Suppl 1:490500. doi:10.1249/01.mss.0000185571.49104.82

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Chinapaw MJProper KIBrug Jvan Mechelen WSingh AS. Relationship between young peoples’ sedentary behaviour and biomedical health indicators: a systematic review of prospective studies. Obes Rev. 2011;12:e62132. PubMed doi:10.1111/j.1467-789X.2011.00865.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Choi LLiu ZMatthews CBuchowski M. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):35764. PubMed doi:10.1249/MSS.0b013e3181ed61a3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Choi LWard SCSchnelle JFBuchowski MS. Assessment of wear/nonwear time classification algorithms for triaxial accelerometer. Med Sci Sports Exerc. 2012;44(10):200916. doi:10.1249/MSS.0b013e318258cb36

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Colley RGorber SCTremblay MS. Quality control and data reduction procedures for accelerometry-derived measures of physical activity. Health Rep. 2010;21(1):639. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Computer Science and Applications Inc. Activity Monitor Operator’s Manual. Model 7164. Shalimar, FL: Computer Science and Applications, Inc; 1995.

    • Search Google Scholar
    • Export Citation
  • 14.

    Deforche BBourdeaudhuij BID’hondt ECardon G. Objectively measured physical activity, physical activity related personality and body mass index in 6- to 10-yr-old children: a cross-sectional study. Int J Behav Nutr Phys Act. 2009;6:25. PubMed doi:10.1186/1479-5868-6-25

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Dietz WHGortmaker SL. Do we fatten our children at the TV set? Obesity and television viewing in children and adolescents. Pediatrics. 1985;75:80712. PubMed

    • Search Google Scholar
    • Export Citation
  • 16.

    Ekelund UBrage SFroberg Ket al. TV viewing and physical activity are independently associated with metabolic risk in children: the European Youth Heart Study. PLoS Med. 2006;3:e488. PubMed doi:10.1371/journal.pmed.0030488

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Ekelund USardinha LBAndersson SAet al. Associations between objectively assessed physical activity and indicators of body fatness in 9- and 10-yr old children: a population based study from 4 distinct regions in Europe (the European Youth Heart Study). Am J Clin Nutr. 2004;80:58490. PubMed

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Evenson KTerry X. Assessment of differing definitions of accelerometer nonwear time. Res Q Exerc Sport. 2009;80(2):35562. doi:10.1080/02701367.2009.10599570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fairclough SJNoonan RRowlands AVvan Hees VKnowles ZBoddy LM. Wear compliance and activity in children wearing wrist and hip-mounted accelerometers. Med Sci Sports Exerc. 2016;48(2):24553. PubMed doi:10.1249/MSS.0000000000000771

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Grant PMRyan CGTigbe WWGranat MH. The validation of a novel activity monitor in the measurement of posture and motion during everyday activities. Br J Sports Med. 2006;40:9927. PubMed doi:10.1136/bjsm.2006.030262

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Grydeland MHansen BHRied-Larsen MKolle EAnderssen SA. Comparison of three generations of ActiGraph activity monitors under free-living conditions: do they provide comparable assessments of overall physical activity in 9-year old children? BMC Sports Sci Med Rehabil. 2014;6(1):26. doi:10.1186/2052-1847-6-26

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Jago RWedderkopp NKristensen PLMøller NCAndersen LBCooper ARFroberg K. Six-year change in youth physical activity and effect on fasting insulin and HOMA-IR. Am J Prev Med. 2008;35(6):55460. PubMed doi:10.1016/j.amepre.2008.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Janssen IKatzmarzyk PTBoyce WFet al. Comparison of overweight and obesity prevalence in school-aged youth from 34 countries and their relationships with physical activity and dietary patterns. Obes Rev. 2005;6(2):12332. PubMed doi:10.1111/j.1467-789X.2005.00176.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    John DFreedson P. ActiGraph and Actical physical activity monitors: a peek under the hood. Med Sci Sports Exerc. 2012;44 Suppl 1:S86. doi:10.1249/MSS.0b013e3182399f5e

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kerr JMarshall SJGodbole Set al. Using the SenseCam to improve classifications of sedentary behavior in free-living settings. Am J Prev Med. 2013;44(3):2906. PubMed doi:10.1016/j.amepre.2012.11.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kozey SLLyden KHowe CAStaudenmayer JWFreedson PS. Accelerometer output and MET values of common physical activities. Med Sci Sports Exerc. 2010;42(9):177684. PubMed doi:10.1249/MSS.0b013e3181d479f2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kozey SLStaudenmayer JWTroiano RPFreedson PS. Comparison of the ActiGraph 7164 and the ActiGraph GT1M during self-paced locomotion. Med Sci Sports Exerc. 2010;42(5):9716.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mannini AIntille SSRosenberger MSabatini AMHaskell W. Activity recognition using a single accelerometer placed at the wrist or ankle. Med Sci Sports Exerc. 2013;45(11):2193203. PubMed doi:10.1249/MSS.0b013e31829736d6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Mark AEJanssen I. Relationship between screen time and metabolic syndrome in adolescents. J Public Health. 2008;30(2):15360. doi:10.1093/pubmed/fdn022

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Masse LCFuemmeler BFAnderson BMatthews CETrost SGCatellier DJTreuth M. Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc. 2005;37 Suppl 11:S54454. PubMed doi:10.1249/01.mss.0000185674.09066.8a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mathias RLBrønd JCBrage SHansen BHGrydeland MAndersen LBMøller NC. Mechanical and free living comparisons of four generations of the Actigraph activity monitor. Int J Behav Nutr Phys Act. 2012;9:113. doi:10.1186/1479-5868-9-113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Matthews CEChen KYFreedson PSBuchowski MSBeech BMPate RRTroiano RP. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am J Epidemiol. 2008;167(7):87581. PubMed doi:10.1093/aje/kwm390

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Mattocks CNess ALeary Set al. Use of accelerometers in a large field-based study of children: protocols, design issues, and effects on precision. J Phys Act Health. 2008;5 Suppl 1:S98111. doi:10.1123/jpah.5.s1.s98

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Nader PRBradley RHHouts RMMcRitchie SLO’Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA. 2008;300(3):295305. PubMed doi:10.1001/jama.300.3.295

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Owen CGNightingale CMRudnicka ARCook DGEkelund UWhincup PH. Ethnic and gender differences in physical activity levels among 9-10-year-old children of white European, South Asian and African-Caribbean origin: the Child Heart Health Study in England (CHASE Study). Int J Epidemiol. 2009;38(4):108293. PubMed doi:10.1093/ije/dyp176

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Owen NHealy GNMathews CEDunstan DW. Too much sitting: the population-health science of sedentary behavior. Exerc Sport Sci Rev. 2010;38:10513. PubMed doi:10.1097/JES.0b013e3181e373a2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Pearson NBiddle SJH. Sedentary behavior and dietary intake in children, adolescents, and adults: a systematic review. Am J Prev Med. 2011;41(2):17888. PubMed doi:10.1016/j.amepre.2011.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Ridgers NDSalmon JRidley KO’Connell EArundell LTimperio A. Agreement between activPAL and ActiGraph for assessing children’s sedentary time. Int J Behav Nutr Phys Act. 2012;9:15. PubMed doi:10.1186/1479-5868-9-15

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Rosenberger MEHaskell WLAlbinali FMota SNawyn JIntille S. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Med Sci Sports Exerc. 2013;45(5):96475. PubMed doi:10.1249/MSS.0b013e31827f0d9c

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Rowlands AEsliger DWEady JEston RG. Empirical evidence to inform decisions regarding identification of non-wear periods from accelerometer habitual physical activity data. In: Bacquet GBethoin S editors. Children and Exercise XXV. London, UK: Routledge; 2010 pp. 21922.

    • Search Google Scholar
    • Export Citation
  • 41.

    Rowlands AVPilgrim ELEston RG. Seasonal changes in children’s physical activity: an examination of group changes, intra-individual variability and consistency in activity pattern across season. Ann Hum Biol. 2009;36(4):36378. PubMed doi:10.1080/03014460902824220

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Schaefer SELoan MVGerman JB. A feasibility study of wearable activity monitors for pre-adolescent school-age children. Prev Chronic Dis. 2014;11:130262. doi:10.5888/pcd11.130262

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Sedentary Behaviour Research Network. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours.”  Appl Physiol Nutr Metab. 2012;37(3):5402. doi:10.1139/h2012-024

    • Search Google Scholar
    • Export Citation
  • 44.

    Sirard JRForsyth AOakes JMSchmitz KH. Accelerometer test-retest reliability by data processing algorithms: results from the Twin Cities Walking Study. J Phys Act Health. 2011;8:66874. PubMed doi:10.1123/jpah.8.5.668

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Troiano RPBerrigan DDodd KWMâsse LCTilert TMcDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 200840(1):1818. PubMed doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    van Sluijs EMFSkidmore PMLMwanza Ket al. Physical activity and dietary behaviour in a population-based sample of British 10-year old children: the SPEEDY study (sport, physical activity and eating behaviour: environmental determinants in young people). BMC Public Health. 2008;8:388. PubMed doi:10.1186/1471-2458-8-388

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Wanner MMartin BWMeier FProbst-Hensch NKriemler S. Effects of filter choice in GT3X accelerometer assessments of free-living activity. Med Sci Sports Exerc. 2013;45(1):1707. PubMed doi:10.1249/MSS.0b013e31826c2cf1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Winkler EAGPaul AClark BKMatthews CEOwen NGHealy GN. Identifying sedentary time using automated estimates of accelerometer wear time. Br J Sports Med. 2011;46(6):43642. PubMed doi:10.1136/bjsm.2010.079699

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 24 24 7
Full Text Views 4 4 1
PDF Downloads 2 2 1
Altmetric Badge
PubMed
Google Scholar