Age-Related Differences in Spatiotemporal Variables and Ground Reaction Forces During Sprinting in Boys

in Pediatric Exercise Science
View More View Less
  • 1 National Institute of Fitness and Sports in Kanoya
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Purpose: We aimed to elucidate age-related differences in spatiotemporal and ground reaction force variables during sprinting in boys over a broad range of chronological ages. Methods: Ground reaction force signals during 50-m sprinting were recorded in 99 boys aged 6.5–15.4 years. Step-to-step spatiotemporal variables and mean forces were then calculated. Results: There was a slower rate of development in sprinting performance in the age span from 8.8 to 12.1 years compared with younger and older boys. During that age span, mean propulsive force was almost constant, and step frequency for older boys was lower regardless of sprinting phase. During the ages younger than 8.8 years and older than 12.1 years, sprint performance rapidly increased with increasing mean propulsive forces during the middle acceleration and maximal speed phases and during the initial acceleration phase. Conclusion: There was a stage of temporal slower development of sprinting ability from age 8.8 to 12.1 years, being characterized by unchanged propulsive force and decreased step frequency. Moreover, increasing propulsive forces during the middle acceleration and maximal speed phases and during the initial acceleration phase are probably responsible for the rapid development of sprinting ability before and after the period of temporal slower development of sprinting ability.

Nagahara, Takai, Haramura, Mizutani, Matsuo, Kanehisa, and Fukunaga are with the National Institute of Fitness and Sports in Kanoya, Kanoya, Kagoshima, Japan.

Address author correspondence to Ryu Nagahara at nagahara@nifs-k.ac.jp.
  • 1.

    Beunen G, Malina RM. Growth and physical performance relative to the timing of the adolescent spurt. Exerc Sport Sci Rev. 1988;16:50340. PubMed doi:10.1249/00003677-198800160-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Chatzilazaridis I, Panoutsakopoulos V, Papaiakovou GI. Stride characteristics progress in a 40-m sprinting test executed by male preadolescent, adolescent and adult athletes. J Biol Exerc. 2012;8:523.

    • Search Google Scholar
    • Export Citation
  • 3.

    Cronin JB, Rumpf M. The effect of four different step detection thresholds on non-motorized treadmill sprint measurement. J Strength Cond Res. 2014;28:29963000. PubMed doi:10.1519/JSC.0000000000000497

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Fortney VL. The kinematics and kinetics of the running pattern of two-, four-, and six-year-old children. Res Q Exerc Sport. 1983;54:12635. doi:10.1080/02701367.1983.10605284

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Gerber H, Stuessi E. A measuring system to assess and to compute the double stride. In: Jonsson B, editor. Biomechanics X-B. Champaign, IL: Human Kinetics; 1981, pp. 10558.

    • Search Google Scholar
    • Export Citation
  • 6.

    Hunter JP, Marshall RN, McNair PJ. Interaction of step length and step rate during sprint running. Med Sci Sports Exerc. 2004;36:26171. PubMed doi:10.1249/01.MSS.0000113664.15777.53

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Hunter JP, Marshall RN, McNair PJ. Relationships between ground reaction force impulse and kinematics of sprint-running acceleration. J Appl Biomech. 2005;21:3143. PubMed doi:10.1123/jab.21.1.31

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Jones RH, Molitoris BA. A statistical method for determining the breakpoint of two lines. Anal Biochem. 1984;141:28790. PubMed doi:10.1016/0003-2697(84)90458-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Malina RM, Bouchard C, Bar-Or O. Growth, Maturation, and Physical Activity. Champaign, IL: Human Kinetics; 2004.

  • 10.

    Meyers RW, Oliver JL, Hughes MG, Cronin JB, Lloyd RS. Maximal sprint speed in boys of increasing maturity. Pediatr Exerc Sci. 2015;27:8594. PubMed doi:10.1123/pes.2013-0096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Meyers RW, Oliver JL, Hughes MG, Lloyd RS, Cronin JB. The influence of maturation on sprint performance in boys over a 21-month period. Med Sci Sports Exerc. 2016;48:255562. PubMed doi:10.1249/MSS.0000000000001049

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Morin JB, Slawinski J, Dorel S, et al. Acceleration capability in elite sprinters and ground impulse: push more, brake less? J Biomech. 2015;48:314954. PubMed doi:10.1016/j.jbiomech.2015.07.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Nagahara R, Matsubayashi T, Matsuo A, Zushi K. Kinematics of transition during human accelerated sprinting. Biol Open. 2014;3:68999. PubMed doi:10.1242/bio.20148284

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Nagahara R, Mizutani M, Matsuo A, Kanehisa H, Fukunaga T. Association of step width with accelerated sprinting performance and ground reaction force. Int J Sports Med. 2017;38:53440. PubMed doi:10.1055/s-0043-106191

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Nagahara R, Naito H, Miyashiro K, Morin JB, Zushi K. Traditional and ankle-specific vertical jumps as strength-power indicators for maximal sprint acceleration. J Sports Med Phys Fitness. 2014;54:6919. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Nagahara R, Naito H, Morin JB, Zushi K. Association of acceleration with spatiotemporal variables in maximal sprinting. Int J Sports Med. 2014;35:75561. PubMed doi:10.1055/s-0033-1363252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Oliver J, Lloyd R, Rumpf M. Developing speed throughout childhood and adolescence: the role of growth, maturation and training. Strength Cond J. 2013;35:428. doi:10.1519/SSC.0b013e3182919d32

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Philippaerts RM, Vaeyens R, Janssens M, et al. The relationship between peak height velocity and physical performance in youth soccer players. J Sports Sci. 2006;24:22130. PubMed doi:10.1080/02640410500189371

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Rabita G, Dorel S, Slawinski J, Sàez-de-Villarreal E, Couturier A, Samozino P, Morin JB. Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports. 2015;25:58394. PubMed doi:10.1111/sms.12389

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ross A, Leveritt M, Riek S. Neural influences on sprint running: training adaptations and acute responses. Sports Med. 2001;31:40925. PubMed doi:10.2165/00007256-200131060-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Schepens B, Willems PA, Cavagna GA. The mechanics of running in children. J Physiol. 1998;509:92740. PubMed doi:10.1111/j.1469-7793.1998.927bm.x

  • 22.

    Schneider DA, Phillips SE, Stoffolano S. The simplified V-slope method of detecting the gas exchange threshold. Med Sci Sports Exerc. 1993;25:11804. PubMed doi:10.1249/00005768-199310000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Viru A, Lako J, Harro M, Volver A, Laaneots L, Viru M. Critical periods in the development of performance capacity during childhood and adolescence. Eur J Phys Educ. 1999;4:75119. doi:10.1080/1740898990040106

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Weyand PG, Sternlight DB, Bellizzi MJ, Wright S. Faster top running speeds are achieved with greater ground forces not more rapid leg movements. J Appl Physiol. 2000;89:19919. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Yague PH, De La Fuente J. Changes in height and motor performance relative to peak height velocity: a mixed-longitudinal study of Spanish boys and girls. Am J Hum Biol. 1998;10:64760. PubMed doi:10.1002/(SICI)1520-6300(1998)10:5<647::AID-AJHB11>3.0.CO;2-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 335 267 16
Full Text Views 6 6 0
PDF Downloads 2 2 0