100-m Breaststroke Swimming Performance in Youth Swimmers: The Predictive Value of Anthropometrics

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

This study aimed to estimate the optimal body size, limb segment length, and girth or breadth ratios of 100-m breaststroke performance in youth swimmers. In total, 59 swimmers [male: n = 39, age = 11.5 (1.3) y; female: n = 20, age = 12.0 (1.0) y] participated in this study. To identify size/shape characteristics associated with 100-m breaststroke swimming performance, we computed a multiplicative allometric log-linear regression model, which was refined using backward elimination. Results showed that the 100-m breaststroke performance revealed a significant negative association with fat mass and a significant positive association with the segment length ratio (arm ratio = hand length/forearm length) and limb girth ratio (girth ratio = forearm girth/wrist girth). In addition, leg length, biacromial breadth, and biiliocristal breadth revealed significant positive associations with the 100-m breaststroke performance. However, height and body mass did not contribute to the model, suggesting that the advantage of longer levers was limb-specific rather than a general whole-body advantage. In fact, it is only by adopting multiplicative allometric models that the previously mentioned ratios could have been derived. These results highlighted the importance of considering anthropometric characteristics of youth breaststroke swimmers for talent identification and/or athlete monitoring purposes. In addition, these findings may assist orienting swimmers to the appropriate stroke based on their anthropometric characteristics.

Sammoud, Negra, Bouguezzi, and Hachana are with the Research Unit (UR17JS01) “Sport Performance & Health,” Higher Institute of Sport and Physical Education of Ksar Saïd, Tunis, Tunisia. Nevill is with the Faculty of Education, Health and Wellbeing, University of Wolverhampton, Walsall, United Kingdom. Chaabene is with the Division of Training and Movement Science, Research Focus Cognition Sciences, University of Potsdam, Potsdam, Germany; and the High Institute of Sports and Physical Education of Kef, University of Jendouba, Jendouba, Tunisia. Hachana is also with the Higher Institute of Sports and Physical Education, Manouba University, Tunis, Tunisia.

Address author correspondence to Yassine Negra at negrayassine@yahoo.fr.
  • 1.

    Barbosa TM, Costa M, Marinho JD, Coelho M, Moreira M, Silva AJ. Modeling the links between young swimmer’s performance: energetic and biomechanical profiles. Pediatr Exerc Sci. 2010;22:379–91. PubMed doi:10.1123/pes.22.3.379

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Barbosa TM, Fernandes RJ, Keskinen KL, Vilas-Boas JP. The influence of stroke mechanics into energy cost of elite swimmers. Eur J Appl Physiol. 2008;103:139–49. PubMed doi:10.1007/s00421-008-0676-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Batterham A, George K, Mullineaux D. Allometric scaling of left ventricular mass by body dimensions in males and females. Med Sci Sports Exerc. 1997;29:181–6. PubMed doi:10.1097/00005768-199702000-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Benjanuvatra N, Blanksby BA, Elliott BC. Morphology and hydrodynamic resistance in young swimmers. Pediatr Exerc Sci. 2001;13(3):246–55. doi:10.1123/pes.13.3.246

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Bond D, Goodson L, Oxford SW, Nevill AM, Duncan MJ. The association between anthropometric variables, functional movement screen scores and 100 m freestyle swimming performance in youth swimmers. Sports. 2015;3:1–11. doi:10.3390/sports3010001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bouchard C, Malina RM, Perusse L. Genetics of Fitness and Physical Performance. Champaign, IL: Human Kinetics; 1997.

  • 7.

    Bown J, West G. Scaling in Biology. New York, NY: Oxford University Press; 2000.

  • 8.

    Carter JEL, Ackland TR. Kinanthropometry in Aquatic Sports: A Study of World Class Athletes. Champaign, IL: Human Kinetics; 1994.

  • 9.

    Caruso JF, Daily JS, Mason ML, et al. Anthropometry as a predictor of vertical jump heights derived from an instrumented platform. J Strength Cond Res. 2012;26:284–92. PubMed doi:10.1519/JSC.0b013e31821d97c0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chatard JC, Lavoie JM, Bourgoin B, Lacour JR. The contribution of passive drag as a determinant of swimming performance. Int J Sports Med. 1990;11(5):367–72. PubMed doi:10.1055/s-2007-1024820

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Chatard JC, Lavoie JM, Lacour JR. Analysis of determinants of swimming economy in front crawl. Eur J Appl Physiol. 1991;61:88–92. doi:10.1007/BF00236699

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Chatard JC, Padilla S, Cazorla G, Lacour JR. Influence of body height, weight, hydrostatic lift and training on the energy cost of the front crawl. N Z J Sports Med. 1985;13:82–4.

    • Search Google Scholar
    • Export Citation
  • 13.

    Craig AB Jr, Skehan PL, Pawelczyk JA, Boomer WL. Velocity, stroke rate, and distance per stroke during elite swimming competition. Med Sci Sports Exerc. 1985;17(6):625–34. doi:10.1249/00005768-198512000-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Deprez D, Buchheit M, Fransen J, Pion J, Lenoir M, Philippaerts RM, Vaeyens R. A longitudinal study investigating the stability of anthropometry and soccer-specific endurance in pubertal high-level youth soccer players. J Sports Sci Med. 2015;14(2):418–26. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Di Prampero P. The energy cost of human locomotion on land and in water. Int J Sports Med. 1986;7:55–72. doi:10.1055/s-2008-1025736

  • 16.

    Duchè G, Falgairette G, Bedu M, Lac G. Analysis of performance of prepubertal swimmers assessed from anthropometric and bio-energetic characteristics. Eur J Appl Physiol Occup Physiol. 1993;66(5):467–71. doi:10.1007/BF00599623

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fédération Internationale de Natation. Talent identification programmes [Internet]. 2014 [cited 2014 Sep 18]. Available from: http://www.fina.org/

    • Export Citation
  • 18.

    Figueiredo R, Pendergast DR, Vilas-Boas JP, Fernandes RJ. Interplay of biomechanical, energetic, coordinative, and muscular factors in a 200 m front crawl swim. Biomed Res Int. 2013;2013:897232. PubMed doi:10.1155/2013/897232

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Fish FE, Hui CA. Dolphin swimming—a review. Mammal Rev. 1991;21(B):181–95. doi:10.1111/j.1365-2907.1991.tb00292.x

  • 20.

    Fleagle J. Size and scaling in primate biology. In: Jungers W, editor. Size and Adaptation in Primates. New York, NY: Plenum Press; 1985;1–19.

    • Search Google Scholar
    • Export Citation
  • 21.

    Geladas N, Nassis GP, Pavlicevic S. Somatic and physical traits affecting sprint swimming performance in young swimmers. Int J Sports Med. 2005;26:139–44. doi:10.1055/s-2004-817862

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Green L, Gabriel DA. Anthropometrics and electromyography as predictors for maximal voluntary isometric arm strength. J Sport Health Sci. 2012;1:107–13. doi:10.1016/j.jshs.2012.05.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Grimston SK, Hay JG. Relationships among anthropometric and stroking characteristics of college swimmers. Med Sci Sports Exerc. 1986;18:60–8. doi:10.1249/00005768-198602000-00011

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Hahn A. Identification and selection of talent in Australian rowing. Excel. 1990;6(3):5–11.

  • 25.

    Helmuth HS. Anthropometric survey of young swimmers. Anthropol Anz. 1980;38:17–34. PubMed

  • 26.

    Huijing P, Toussaint H, Mackay R, et al. Active drag related to body dimensions. In: Ungerechts B, Reischle K, Wilke K, editors. Swimming Science V. Champaign, IL: Human Kinetics; 1988, pp. 31–8.

    • Search Google Scholar
    • Export Citation
  • 27.

    Issurin VB. Evidence-based prerequisites and precursors of athletic talent: a review. Sports Med. 2017;47(10):1993–2010. doi:10.1007/s40279-017-0740-0

  • 28.

    Jürimäe J, Haljaste K, Cicchella A, Lätt E, Purge P, Leppik A, Jürimäe T. Analysis of swimming performance from physical, physiological, and biomechanical parameters in young swimmers. Pediatr Exerc Sci. 2007;19:70–81. PubMed doi:10.1123/pes.19.1.70

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Lätt E, Jürimäe J, Mäestu J, et al. Physiological, biomechanical and anthropometrical predictors of sprint swimming performance in adolescent swimmers. J Sports Sci Med. 2010;9(3):398–404. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Leblanc H, Seifert L, Tourny-Chollet C, Chollet D. Velocity variations in breaststroke swimmers of different competitive levels. Int J Sports Med. 2007;28:140–7. doi:10.1055/s-2006-924205

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Marinho DA, Barbosa TM, Reis VM, et al. Swimming propulsion forces are enhanced by a small finger spread. J Appl Biomech. 2010;26(1):87–92. PubMed doi:10.1123/jab.26.1.87

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):689–94. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Morais JE, Jesus S, Lopes V, Garrido N, Silva A, Marinho D, Barbosa TM. Linking selected kinematic, anthropometric and hydrodynamic variables to young swimmer performance. Pediatr Exerc Sci. 2012;24:649–64. doi:10.1123/pes.24.4.649

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Morais JE, Silva AJ, Marinho DA, Lopes VP, Barbosa TM. Determinant factors of long-term performance development in young swimmers. Int J Sports Physiol Perf. 2017;12:198–205. doi:10.1123/ijspp.2015-0420

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Nasirzade A, Sadeghi H, Sobhkhiz A, Mohammadian K, Nikouei A, Baghaiyan M, Fattahi A. Multivariate analysis of 200-m front crawl swimming performance in young male swimmers. Acta Bioeng Biomech. 2015;17(3):137–43. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Negra Y, Chaabene H, Hammami M, Khlifa R, Gabett T, Hachana Y. Allometric scaling and age related differences in change of direction speed performances of young soccer players. Sci Sports. 2015;31(2):19–26. doi:10.1016/j.scispo.2015.10.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37.

    Nevill AM, Oxford SW, Duncan MJ. Optimal body size and limb length ratios associated with 100-m personal-best swim speeds. Med Sci Sports Exerc. 2015;47:1714–8. doi:10.1249/MSS.0000000000000586

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Perez AJ, Bassini CF, Pereira BMF, Sarro KJ. Correlation between anthropometric variables and stroke length and frequency in swimmers of Espirito Santo. Rev Mackenzie Educ Fís Esp. 2011;10:19–27.

    • Search Google Scholar
    • Export Citation
  • 39.

    Reis VM, Barbosa TM, Marinho DA, et al. Physiological determinants of performance in breaststroke swimming events. Int J Sports Med. 2010;11:324–35.

    • Search Google Scholar
    • Export Citation
  • 40.

    Sammoud S, Nevill AM, Negra Y, Bouguezzi R, Chaabene H, Hachana Y. Allometric associations between body size, shape, and 100-m butterfly speed performance. J Sports Med Phys Fitness. E-pub ahead of print 2017. doi:10.23736/S0022-4707.17.07480-1

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Santos MA, Barbosa ML Jr, Melo WV, Veronese da Costa A, Costa MC. Estimate of propulsive force in front crawl swimming in young athletes. Open Access J Sports Med. 2012;3:115–20. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Schnitzler C, Seifert L, Ernwein V, Chollet D. Arm coordination adaptations assessment in swimming. Int J Sports Med. 2008;29(6):480–6. PubMed doi:10.1055/s-2007-989235

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Slaughter MH, Lohman TG, Boileau RA, Horswill CA, Stillman RJ, Van Loan MD, Bemben DA. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709–23. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Soares PM, Sousa F, Vilas-Boas JP. Differences in breaststroke synchronisation induced by different race velocities. In: Keskinen KL, Komi PV, Hollander AP, editors. Biomechanics and Medicine in Swimming VIII. Jyväskylä, Finland: Gummerus Printing; 1999, pp. 53–7.

    • Search Google Scholar
    • Export Citation
  • 45.

    Stewart A, Marfell-Jones M, Olds T, de Ridder H. International Standards for Anthropometric Assessment. Lower Hutt, New Zealand: ISAK; 2011, pp. 57–72.

  • 46.

    Szopa J, Mleczko E, Zychowska M, et al. Possibilities of determination of genetic conditionings of somatic and functional traits on the backgrounds of family studies. J Hum Kinet. 1999;2:21–36.

    • Search Google Scholar
    • Export Citation
  • 47.

    Takagi H, Sugimoto S, Nishijima N, Wilson B. Differences in stroke phases, arm-leg coordination and velocity fluctuation due to event, gender and performance level in breaststroke. Sports Biomech. 2004;3(1):15–27. PubMed doi:10.1080/14763140408522827

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Toussaint H, Carol A, Kranenborg H, Truijens M. Effect of fatigue on stroking characteristics in an arms-only 100-m front-crawl race. Med Sci Sports Exerc. 2006;38:1635–42. doi:10.1249/01.mss.0000230209.53333.31

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Zamparo P, Pendergast D, Mollendorf J, Termin A, Minetti A. An energy balance of front crawl. Eur J Appl Physiol. 2005;94:134–44. doi:10.1007/s00421-004-1281-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 232 232 44
Full Text Views 16 16 0
PDF Downloads 16 16 0