Agreement Between Standard Body Composition Methods to Estimate Percentage of Body Fat in Young Male Athletes

in Pediatric Exercise Science

Click name to view affiliation

Asunción Ferri-MoralesUniversidad de Castilla-La Mancha

Search for other papers by Asunción Ferri-Morales in
Current site
Google Scholar
PubMed
Close
*
,
Marcus Vinicius Nascimento-FerreiraUniversity of São Paulo
University of Zaragoza

Search for other papers by Marcus Vinicius Nascimento-Ferreira in
Current site
Google Scholar
PubMed
Close
*
,
Dimitris VlachopoulosUniversity of Exeter

Search for other papers by Dimitris Vlachopoulos in
Current site
Google Scholar
PubMed
Close
*
,
Esther Ubago-GuisadoUniversity of Exeter
Universidad de Castilla-La Mancha

Search for other papers by Esther Ubago-Guisado in
Current site
Google Scholar
PubMed
Close
*
,
Ana Torres-CostosoUniversidad de Castilla-La Mancha

Search for other papers by Ana Torres-Costoso in
Current site
Google Scholar
PubMed
Close
*
,
Augusto Cesar F. De MoraesUniversity of São Paulo
Johns Hopkins Bloomberg School of Public Health

Search for other papers by Augusto Cesar F. De Moraes in
Current site
Google Scholar
PubMed
Close
*
,
Alan R. BarkerUniversity of Exeter

Search for other papers by Alan R. Barker in
Current site
Google Scholar
PubMed
Close
*
,
Luis A. MorenoUniversity of Zaragoza
Instituto Agroalimentario de Aragón (IA2)
Instituto de Investigación Sanitaria Aragón (IIS Aragón)
Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn)

Search for other papers by Luis A. Moreno in
Current site
Google Scholar
PubMed
Close
*
,
Vicente Martínez-VizcainoUniversidad de Castilla-La Mancha
Universidad Autónoma de Chile

Search for other papers by Vicente Martínez-Vizcaino in
Current site
Google Scholar
PubMed
Close
*
, and
Luis Gracia-MarcoUniversity of Zaragoza
University of Exeter
University of Granada

Search for other papers by Luis Gracia-Marco in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To examine the intermethods agreement of dual-energy X-ray absorptiometry (DXA) and foot-to-foot bioelectrical impedance analysis (BIA) to assess the percentage of body fat (%BF) in young male athletes using air-displacement plethysmography (ADP) as the reference method. Methods: Standard measurement protocols were carried out in 104 athletes (40 swimmers, 37 footballers, and 27 cyclists, aged 12–14 y). Results: Age-adjusted %BF ADP and %BF BIA were significantly higher in swimmers than footballers. ADP correlates better with DXA than with BIA (r = .84 vs r = .60, P < .001). %BF was lower when measured by DXA and BIA than ADP (P < .001), and the bias was higher when comparing ADP versus BIA than ADP versus DXA. The intraclass correlation coefficients between DXA and ADP showed a good to excellent agreement (r = .67–.79), though it was poor when BIA was compared with ADP (r = .26–.49). The ranges of agreement were wider when comparing BIA with ADP than DXA with ADP. Conclusion: DXA and BIA seem to underestimate %BF in young male athletes compared with ADP. Furthermore, the bias significantly increases with %BF in the BIA measurements. At the individual level, BIA and DXA do not seem to predict %BF precisely compared with ADP in young athletic populations.

Ferri-Morales and Torres-Costoso are with the School of Nursing and Physiotherapy, Universidad de Castilla-La Mancha, Toledo, Spain. Ferri-Morales, Torres-Costoso, and Martínez-Vizcaino are with the Health and Social Research Center, Universidad de Castilla-La Mancha, Cuenca, Spain. Nascimento-Ferreira and De Moraes are with the Youth/Child and Cardiovascular Risk and Environmental (YCARE) Research Group, School of Medicine, University of São Paulo, São Paulo, Brazil. Nascimento-Ferreira, Moreno, and Gracia-Marco are with the Growth, Exercise, Nutrition and Development (GENUD) Research Group, University of Zaragoza, Zaragoza, Spain. Vlachopoulos, Ubago-Guisado, Barker, and Gracia-Marco are with the Children’s Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, United Kingdom. Ubago-Guisado is also with the IGOID Research Group, Universidad de Castilla-La Mancha, Toledo, Spain. De Moraes is also with the Dept. of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD. Moreno is also with the Instituto Agroalimentario de Aragón (IA2), Instituto de Investigación Sanitaria Aragón (IIS Aragón), and Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Zaragoza, Spain. Martínez-Vizcaino is also with the Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile. Gracia-Marco is also with the PROFITH “PROmoting FITness and Health through physical activity” Research Group, Dept. of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Spain.

Address author correspondence to Luis Gracia-Marco at lgracia@ugr.es.
  • Collapse
  • Expand
  • 1.

    Ackland TR, Lohman TG, Sundgot-Borgen J, Maughan RJ, Meyer NL, Stewart AD, Müller W. Current status of body composition assessment in sport: review and position statement on behalf of the ad hoc research working group on body composition health and performance, under the auspices of the I.O.C. Medical Commission. Sports Med. 2012;42(3):22749. doi:10.2165/11597140-000000000-00000

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Azcona C, Koek N, Fruhbeck G. Fat mass by air-displacement plethysmography and impedance in obese/non-obese children and adolescents. Int J Pediatr Obes. 2006;1(3):17682. PubMed doi:10.1080/17477160600858740

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ballard TP, Fafara L, Vukovich MD. Comparison of Bod Pod and DXA in female collegiate athletes. Med Sci Sports Exerc. 2004;36(4):7315. PubMed doi:10.1249/01.MSS.0000121943.02489.2B

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bentzur KM, Kravitz L, Lockner DW. Evaluation of the BOD POD for estimating percent body fat in collegiate track and field female athletes: a comparison of four methods. J Strength Cond Res. 2008;22(6):198591. PubMed doi:10.1519/JSC.0b013e318185f196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):30710. doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Brozek J, Grande F, Anderson JT, Keys A. Densitometric analysis of body composition: revision of some quantitative assumptions. Ann N Y Acad Sci. 1963;110:11340. PubMed doi:10.1111/j.1749-6632.1963.tb17079.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Byrne S, McLean N. Eating disorders in athletes: a review of the literature. J Sci Med Sport. 2001;4(2):14559. doi:10.1016/S1440-2440(01)80025-6

  • 8.

    Collins MA, Millard-Stafford ML, Sparling PB, Snow TK, Rosskopf LB, Webb SA, Omer J. Evaluation of the BOD POD for assessing body fat in collegiate football players. Med Sci Sports Exerc. 1999;31(9):13506. PubMed doi:10.1097/00005768-199909000-00019

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Damilakis J, Solomou G, Manios GE, Karantanas A. Pediatric radiation dose and risk from bone density measurements using a GE Lunar Prodigy scanner. Osteoporos Int. 2013;24(7):202531. doi:10.1007/s00198-012-2261-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Dehghan M, Merchant AT. Is bioelectrical impedance accurate for use in large epidemiological studies? Nutr J. 2008;7:26. PubMed doi:10.1186/1475-2891-7-26

  • 11.

    Dewit O, Fuller NJ, Fewtrell MS, Elia M, Wells JC. Whole body air displacement plethysmography compared with hydrodensitometry for body composition analysis. Arch Dis Child. 2000;82(2):15964. doi:10.1136/adc.82.2.159

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Dixon CB, Deitrick RW, Pierce JR, Cutrufello PT, Drapeau LL. Evaluation of the BOD POD and leg-to-leg bioelectrical impedance analysis for estimating percent body fat in National Collegiate Athletic Association Division III collegiate wrestlers. J Strength Cond Res. 2005;19(1):8591.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Elberg J, McDuffie JR, Sebring NG, et al. Comparison of methods to assess change in children’s body composition. Am J Clin Nutr. 2004;80(1):649. PubMed

  • 14.

    Espana Romero V, Ruiz JR, Ortega FB, et al. Body fat measurement in elite sport climbers: comparison of skinfold thickness equations with dual energy X-ray absorptiometry. J Sports Sci. 2009;27(5):46977. PubMed doi:10.1080/02640410802603863

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Fields DA, Goran MI, McCrory MA. Body-composition assessment via air-displacement plethysmography in adults and children: a review. Am J Clin Nutr. 2002;75(3):45367. PubMed doi:10.1093/ajcn/75.3.453

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Fields DA, Hunter GR, Goran MI. Validation of the BOD POD with hydrostatic weighing: influence of body clothing. Int J Obes Relat Metab Disord. 2000;24(2):2005. doi:10.1038/sj.ijo.0801113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fleiss J. The Design and Analysis of Clinical Experiments. New York, NY: John Wiley & Sons, Inc; 1986.

  • 18.

    Gonzalez-Aguero A, Olmedillas H, Gomez-Cabello A, Guillen-Ballester A, Casajus JA, Vicente-Rodriguez G. Inter-methods agreement for the assessment of percentage of body fat between two laboratory methods in male adolescent cyclists. Nutr Hosp. 2013;28(4):104952. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Gracia-Marco L, Ortega FB, Jiménez-Pavón D, Rodríguez G, Castillo MJ, Vicente-Rodríguez G, Moreno LA. Adiposity and bone health in Spanish adolescents. The HELENA study. Osteoporos Int. 2012;23(3):93747. PubMed doi:10.1007/s00198-011-1649-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Kyle UG, Bosaeus I, De Lorenzo AD, et al. Bioelectrical impedance analysis—part I: review of principles and methods. Clin Nutr. 2004;23(5):122643. PubMed doi:10.1016/j.clnu.2004.06.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    McArdle WD, Katch FI, Katch VL (Eds.). Body composition assessment. In: Exercise Physiology: Nutrition, Energy, and Human Performance. 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2009, pp. 72558.

    • Search Google Scholar
    • Export Citation
  • 22.

    McCrory MA, Gomez TD, Bernauer EM, Mole PA. Evaluation of a new air displacement plethysmograph for measuring human body composition. Med Sci Sports Exerc. 1995;27(12):16861691. PubMed doi:10.1249/00005768-199512000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Moliner-Urdiales D, Ruiz JR, Vicente-Rodriguez G, et al. Associations of muscular and cardiorespiratory fitness with total and central body fat in adolescents: the HELENA study. Br J Sports Med. 2011;45(2):1018. PubMed doi:10.1136/bjsm.2009.062430

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Moon JR, Eckerson JM, Tobkin SE, et al. Estimating body fat in NCAA Division I female athletes: a five-compartment model validation of laboratory methods. Eur J Appl Physiol. 2009;105(1):11930. doi:10.1007/s00421-008-0881-9

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Moon JR, Tobkin SE, Costa PB, et al. Validity of the BOD POD for assessing body composition in athletic high school boys. J Strength Cond Res. 2008;22(1):2638. PubMed doi:10.1519/JSC.0b013e31815f60ce

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Nicholson JC, McDuffie JR, Bonat SH, et al. Estimation of body fatness by air displacement plethysmography in African American and white children. Pediatr Res. 2001;50(4):46773. PubMed doi:10.1203/00006450-200110000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Nunez C, Kovera AJ, Pietrobelli A, et al. Body composition in children and adults by air displacement plethysmography. Eur J Clin Nutr. 1999;53(5):3827. PubMed doi:10.1038/sj.ejcn.1600735

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Pietrobelli A, Tato L. Body composition measurements: from the past to the future. Acta Paediatr Suppl. 2005;94(448):813. doi:10.1080/08035320510035221

  • 29.

    Portal S, Rabinowitz J, Adler-Portal D, et al. Body fat measurements in elite adolescent volleyball players: correlation between skinfold thickness, bioelectrical impedance analysis, air-displacement plethysmography, and body mass index percentiles. J Pediatr Endocrinol Metab. 2010;23(4):395400. PubMed doi:10.1515/jpem.2010.061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ramires VV, Dumith SC, Wehrmeister FC, Hallal PC, Menezes AM, Goncalves H. Physical activity throughout adolescence and body composition at 18 years: 1993 Pelotas (Brazil) birth cohort study. Int J Behav Nutr Phys Act. 2016;13(1):105. PubMed doi:10.1186/s12966-016-0430-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Shim A, Cross P, Norman S, Hauer P. Assessing various body composition measurements as an appropriate tool for estimating body fat in National Collegiate Athletic Association Division I female collegiate athletes. Am J Sports Sci Med. 2014;2(1):15. doi:10.11648/j.ajss.20140201.11

    • Search Google Scholar
    • Export Citation
  • 32.

    Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):4208. PubMed doi:10.1037/0033-2909.86.2.420

  • 33.

    Siri WE. Body composition from fluid spaces and density: analysis of methods. In: Brozek J, Henschel A, editors. Techniques for Measuring Body Composition. Washington, DC: National Academy of Sciences NRC; 1961, pp. 22344.

    • Search Google Scholar
    • Export Citation
  • 34.

    Tanner JM, Whitehouse RH. Clinical longitudinal standards for height, weight, height velocity, weight velocity, and stages of puberty. Arch Dis Child. 1976;51(3):1709. PubMed doi:10.1136/adc.51.3.170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Utter AC, Goss FL, Swan PD, Harris GS, Robertson RJ, Trone GA. Evaluation of air displacement for assessing body composition of collegiate wrestlers. Med Sci Sports Exerc. 2003;35(3):5005. doi:10.1249/01.MSS.0000053726.16625.D5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Vescovi JD, Hildebrandt L, Miller W, Hammer R, Spiller A. Evaluation of the BOD POD for estimating percent fat in female college athletes. J Strength Cond Res. 2002;16(4):599605. PubMed

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Vlachopoulos D, Barker AR, Williams CA, Knapp KM, Metcalf BS, Gracia-Marco L. Effect of a program of short bouts of exercise on bone health in adolescents involved in different sports: the PRO-BONE study protocol. BMC Public Health. 2015;15(1):361. doi:10.1186/s12889-015-1633-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Wells JC, Fewtrell MS. Measuring body composition. Arch Dis Child. 2006;91(7):6127. PubMed doi:10.1136/adc.2005.085522

  • 39.

    Wells JC, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ. Four-component model of body composition in children: density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr. 1999;69(5):90412. PubMed

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3220 1299 106
Full Text Views 71 7 0
PDF Downloads 73 10 0