Exertional Dyspnea in Childhood: Is There an Iceberg Beneath the Apex?

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

This essay expounds on fundamental, quantitative elements of the exercise ventilation in children, which was the subject of the Tom Rowland Lecture given at the NASPEM 2018 Conference. Our knowledge about how much ventilation rises during aerobic exercise is reasonably solid; our understanding of its governance is a work in progress, but our grasp of dyspnea and ventilatory limitation in children (if it occurs) remains embryonic. This manuscript summarizes ventilatory mechanics during dynamic exercise, then proceeds to outline our current understanding of mechanisms of dyspnea, particularly during exercise (exertional dyspnea). Most research in this field has been done in adults, and the vast majority of these studies in patients with chronic obstructive pulmonary disease. To what extent conclusions drawn from this literature apply to children and adolescents—both healthy and those with cardiopulmonary disease—will be discussed. The few, recent, pertinent, pediatric studies will be reviewed in an attempt to provide an empirical basis for proposing a hypothetical model to study exertional dyspnea in youth. Just as somatic growth will have consequences for ventilatory and exercise capacity, so too will neural developmental plasticity and experience affect perception of dyspnea. Our path to understand how these evolving inputs and influences summate during a child’s life will be Columbus’ India.

Pianosi is with the Division of Pediatric Pulmonology & Sleep Medicine, Department of Pediatrics, University of Minnesota, Minneapolis, MN.

Pianosi (ppianosi@umn.edu) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Babb TG. Exercise ventilatory limitation: the role of expiratory flow limitation. Exerc Sport Sci Rev. 2013;41(1):118. PubMed ID: 23038244 doi:10.1097/JES.0b013e318267c0d2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Banzett RBDempsey JAO’Donnell DEWamboldt MZ. Symptom perception and respiratory sensation in asthma. Am J Respir Crit Care Med. 2000;162(3 pt 1):117882. PubMed ID: 10988151 doi:10.1164/ajrccm.162.3.9909112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bellofiore SRicciardolo FLCiancio Net al. Changes in respiratory drive account for the magnitude of dyspnoea during bronchoconstriction in asthmatics. Eur Respir J. 1996;9(6):11559. PubMed ID: 8804931 doi:10.1183/09031936.96.09061155

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Binks APMoosavi SHBanzett RBSchwartzstein RM. “Tightness” sensation of asthma does not arise from the work of breathing. Am J Respir Crit Care Med. 2002;165(1):7882. PubMed ID: 11779734 doi:10.1164/ajrccm.165.1.2105061

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bokov PFiamma MNChevalier-Bidaud Bet al. Increased ventilatory variability and complexity in patients with hyperventilation disorder. J Appl Physiol. 2016;120(10):116572. doi:10.1152/japplphysiol.00859.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Borel BLeclair EThevenet DBeghin LGottrand FFabre C. Mechanical ventilatory constraints during incremental exercise in healthy and cystic fibrosis children. Pediatr Pulmonol. 2014;49(3):2219. PubMed ID: 23765600 doi:10.1002/ppul.22804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Burdon JGJuniper EFKillian KJHargreave FECampbell EJ. The perception of breathlessness in asthma. Am Rev Respir Dis. 1982;126(5):8258. PubMed ID: 7149447

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Casaburi RRennard SI. Exercise limitation in chronic obstructive pulmonary disease. The O’Donnell threshold. Am J Respir Crit Care Med. 2015;191(8):8735. PubMed ID: 25876202 doi:10.1164/rccm.201501-0084ED

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cooper DMKaplan MRBaumgarten LWeiler-Ravell DWhipp BJWasserman K. Coupling of ventilation and CO2 production during exercise in children. Pediatr Res 1987;21(6):56872. PubMed ID: 3110725 doi:10.1203/00006450-198706000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    De Baets FBodart EDramaix-Wilmet Met al. Exercise-induced respiratory symptoms are poor predictors of bronchoconstriction. Pediatr Pulmonol. 2005;39(4):3015. PubMed ID: 15678500 doi:10.1002/ppul.20185

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    De Peuter SVan Diest ILemaigre VVerleden GDemedts MVan den Bergh O. Dyspnea: the role of psychological processes. Clin Psychol Rev. 2004;24(5):55781. PubMed ID: 15325745 doi:10.1016/j.cpr.2004.05.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Dodd JDBarry SCGallagher CG. Respiratory factors do not limit maximal symptom-limited exercise in patients with mild cystic fibrosis lung disease. Respir Physiol Neurobiol. 2006;152(2):17685. PubMed ID: 16169290 doi:10.1016/j.resp.2005.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Dominelli PBArchiza BRamsook AHet al. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Exp Physiol. 2017;102(11):153547. PubMed ID: 28841267 doi:10.1113/EP086566

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dubin AEPatapoutian A. Nociceptors: the sensors of the pain pathway. J Clin Invest. 2010;120(11):376072. PubMed ID: 21041958 doi:10.1172/JCI42843

  • 15.

    Emerson SRKurti SPRosenkranz SKSmith JRHarms CA. Decreased prevalence of exercise expiratory flow limitation from pre- to postpuberty. Med Sci Sports Exerc. 2015;47(7):150311. PubMed ID: 25380473 doi:10.1249/MSS.0000000000000566

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Feldman JMSteinberg DKutner Het al. Perception of pulmonary function and asthma control: the differential role of child versus caregiver anxiety and depression. J Pediatr Psychol. 2013;38(10):1091100. PubMed ID: 23873703 doi:10.1093/jpepsy/jst052

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Forster HVHaouzi PDempsey JA. Control of breathing during exercise. Compr Physiol. 2012;2(1):74377. PubMed ID: 23728984

  • 18.

    Godfrey S. Exercise Testing in Children. London: WB Saunders; 1974.

  • 19.

    Guenette JAWebb KAO’Donnell DE. Does dynamic hyperinflation contribute to dyspnoea during exercise in patients with COPD? Eur Respir J. 2012;40(2):3229. PubMed ID: 22183485 doi:10.1183/09031936.00157711

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Herigstad MHayen AWiech KPattinson KT. Dyspnoea and the brain. Respir Med. 2011;105(6):80917. PubMed ID: 21295457 doi:10.1016/j.rmed.2010.12.022

  • 21.

    Ingle LCleland JGClark AL. Body mass index is related to the perception of exertional breathlessness in patients presenting with dyspnoea of unknown origin. Int J Cardiol. 2012;157(2):3003. PubMed ID: 22483253 doi:10.1016/j.ijcard.2012.03.113

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Johansson HNorlander KBerglund Let al. Prevalence of exercise-induced bronchoconstriction and exercise-induced laryngeal obstruction in a general adolescent population. Thorax. 2015;70(1):5763. PubMed ID: 25380758 doi:10.1136/thoraxjnl-2014-205738

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Johansson HNorlander KHedenstrom Het al. Exercise-induced dyspnea is a problem among the general adolescent population. Respir Med. 2014;108(6):8528. PubMed ID: 24731799 doi:10.1016/j.rmed.2014.03.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Johnson BDReddan WGSeow KCDempsey JA. Mechanical constraints on exercise hyperpnea in a fit aging population. Am Rev Respir Dis. 1991;143(5 Pt 1):96877. PubMed ID: 2024852 doi:10.1164/ajrccm/143.5_Pt_1.968

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Johnson BDSaupe KWDempsey JA. Mechanical constraints on exercise hyperpnea in endurance athletes. J Appl Physiol (1985). 1992;73(3):87486. doi:10.1152/jappl.1992.73.3.874

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Julius SMDavenport KLDavenport PW. Perception of intrinsic and extrinsic respiratory loads in children with life-threatening asthma. Pediatr Pulmonol. 2002;34(6):42533. PubMed ID: 12422340 doi:10.1002/ppul.10199

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Kamal AHMaguire JMWheeler JLCurrow DCAbernethy AP. Dyspnea review for the palliative care professional: treatment goals and therapeutic options. J Palliat Med. 2012;15(1):10614. PubMed ID: 22268406 doi:10.1089/jpm.2011.0110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Lamprecht BVanfleteren LEStudnicka Met al. Sex-related differences in respiratory symptoms: results from the BOLD Study. Eur Respir J. 2013;42(3):85860. PubMed ID: 24000253 doi:10.1183/09031936.00047613

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Laveneziana PWebb KAOra JWadell KO’Donnell DE. Evolution of dyspnea during exercise in chronic obstructive pulmonary disease: impact of critical volume constraints. Am J Respir Crit Care Med. 2011;184(12):136773. PubMed ID: 21885624 doi:10.1164/rccm.201106-1128OC

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Lougheed MDFisher TO’Donnell DE. Dynamic hyperinflation during bronchoconstriction in asthma: implications for symptom perception. Chest. 2006;130(4):107281. PubMed ID: 17035440 doi:10.1378/chest.130.4.1072

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Lougheed MDLam MForkert LWebb KAO’Donnell DE. Breathlessness during acute bronchoconstriction in asthma. Pathophysiologic mechanisms. Am Rev Respir Dis. 1993;148(6 pt 1):14529. PubMed ID: 8256884 doi:10.1164/ajrccm/148.6_Pt_1.1452

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Lovering ATElliott JELaurie SSet al. Ventilatory and sensory responses in adult survivors of preterm birth and bronchopulmonary dysplasia with reduced exercise capacity. Ann Am Thorac Soc. 2014;11(10):152837. PubMed ID: 25380058 doi:10.1513/AnnalsATS.201312-466OC

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Mahler DAO’Donnell DE. Recent advances in dyspnea. Chest. 2015;147(1):23241. PubMed ID: 25560861 doi:10.1378/chest.14-0800

  • 34.

    McClaran SRHarms CAPegelow DFDempsey JA. Smaller lungs in women affect exercise hyperpnea. J Appl Physiol. 1998;84(6):187281. doi:10.1152/jappl.1998.84.6.1872

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    McClaran SRWetter TJPegelow DFDempsey JA. Role of expiratory flow limitation in determining lung volumes and ventilation during exercise. J Appl Physiol. 1999;86(4):135766. doi:10.1152/jappl.1999.86.4.1357

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Mead J. Control of respiratory frequency. Journal of Applied Physiology. 1960;15(3):32536. doi:10.1152/jappl.1960.15.3.325

  • 37.

    Mead J. Functional significance of the area of apposition of diaphragm to rib cage [proceedings]. Am Rev Respir Dis. 1979;119(2 Pt 2):312. PubMed ID: 426349

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Milic-Emili GPetit JMDeroanne R. Mechanical work of breathing during exercise in trained and untrained subjects. J Appl Physiol. 1962;17:436. PubMed ID: 14473890 doi:10.1152/jappl.1962.17.1.43

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Molgat-Seon YDominelli PBRamsook AHet al. The effects of age and sex on mechanical ventilatory constraint and dyspnea during exercise in healthy humans. J Appl Physiol (1985). 2018;124(4):1092106. doi:10.1152/japplphysiol.00608.2017

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Moorcroft AJDodd MEMorris JWebb AK. Symptoms, lactate and exercise limitation at peak cycle ergometry in adults with cystic fibrosis. Eur Respir J. 2005;25(6):10506. PubMed ID: 15929961 doi:10.1183/09031936.05.00011404

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Moy MLLantin MLHarver ASchwartzstein RM. Language of dyspnea in assessment of patients with acute asthma treated with nebulized albuterol. Am J Respir Crit Care Med. 1998;158(3):74953. PubMed ID: 9731000 doi:10.1164/ajrccm.158.3.9707088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Moy MLWoodrow Weiss JSparrow DIsrael ESchwartzstein RM. Quality of dyspnea in bronchoconstriction differs from external resistive loads. Am J Respir Crit Care Med. 2000;162(2 pt 1):4515. PubMed ID: 10934069 doi:10.1164/ajrccm.162.2.9907138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Nourry CDeruelle FFabre Cet al. Evidence of ventilatory constraints in healthy exercising prepubescent children. Pediatr Pulmonol. 2006;41(2):13340. PubMed ID: 16358342 doi:10.1002/ppul.20332

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Nourry CDeruelle FFabre Cet al. Exercise flow-volume loops in prepubescent aerobically trained children. J Appl Physiol. 2005;99(5):191221. doi:10.1152/japplphysiol.00323.2005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Nuijsink MHop WCJongste JCSterk PJDuiverman AECato Study G. Perception of bronchoconstriction: a complementary disease marker in children with asthma. J Asthma. 2013;50(6):5604. PubMed ID: 23672570 doi:10.3109/02770903.2013.792347

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Ottanelli RRosi ERomagnoli Iet al. Perception of bronchoconstriction and bronchial hyper-responsiveness in asthma. Clin Sci. 2000;98(6):6817. doi:10.1042/cs0980681

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Papastamelos CPanitch HBEngland SEAllen JL. Developmental changes in chest wall compliance in infancy and early childhood. J Appl Physiol. 1995;78(1):17984. doi:10.1152/jappl.1995.78.1.179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Parshall MBSchwartzstein RMAdams Let al. An official American Thoracic Society statement: update on the mechanisms, assessment, and management of dyspnea. Am J Respir Crit Care Med. 2012;185(4):43552. PubMed ID: 22336677 doi:10.1164/rccm.201111-2042ST

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Pianosi PPelech A. Stroke volume during exercise in cystic fibrosis. Am J Respir Crit Care Med. 1996;153(3):11059. PubMed ID: 8630552 doi:10.1164/ajrccm.153.3.8630552

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Pianosi PSmith CPAlmudevar AMcGrath PJ. Dalhousie dyspnea scales: pictorial scales to measure dyspnea during induced bronchoconstriction. Pediatr Pulmonol. 2006;41(12):11827. PubMed ID: 17068820 doi:10.1002/ppul.20512

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Pianosi PT. Flow limitation and dysanapsis in children and adolescents with exertional dyspnea. Respir Physiol Neurobiol. 2018;252-253:5863. PubMed ID: 29588200 doi:10.1016/j.resp.2018.03.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Pianosi PTHuebner MZhang ZMcGrath PJ. Dalhousie Dyspnea and perceived exertion scales: psychophysical properties in children and adolescents. Respir Physiol Neurobiol. 2014;199:3440. PubMed ID: 24793132 doi:10.1016/j.resp.2014.04.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Pianosi PTHuebner MZhang ZTurchetta AMcGrath PJ. Dalhousie pictorial scales measuring dyspnea and perceived exertion during exercise for children and adolescents. Ann Am Thorac Soc. 2015;12(5):71826. PubMed ID: 25695139 doi:10.1513/AnnalsATS.201410-477OC

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Radtke THebestreit HGallati Set al. CFTR genotype and maximal exercise capacity in cystic fibrosis: a cross-sectional study. Ann Am Thorac Soc. 2018;15(2):20916. PubMed ID: 29140739 doi:10.1513/AnnalsATS.201707-570OC

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Robertson CVMarino FE. A role for the prefrontal cortex in exercise tolerance and termination. J Appl Physiol (1985). 2016;120(4):4646. doi:10.1152/japplphysiol.00363.2015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Rosenfeld MEmerson JWilliams-Warren Jet al. Defining a pulmonary exacerbation in cystic fibrosis. J Pediatr. 2001;139(3):35965. PubMed ID: 11562614 doi:10.1067/mpd.2001.117288

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Salome CMLeuppi JDFreed RMarks GB. Perception of airway narrowing during reduction of inhaled corticosteroids and asthma exacerbation. Thorax. 2003;58(12):10427. PubMed ID: 14645970 doi:10.1136/thorax.58.12.1042

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Schweitzer CMarchal F. Dyspnoea in children. Does development alter the perception of breathlessness? Respir Physiol Neurobiol. 2009;167(1):14453. PubMed ID: 19114130 doi:10.1016/j.resp.2008.12.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Seear MWensley DWest N. How accurate is the diagnosis of exercise induced asthma among Vancouver schoolchildren? Arch Dis Child. 2005;90(9):898902. PubMed ID: 15855180 doi:10.1136/adc.2004.063974

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Sharma PMorris NRAdams L. Effect of induced leg muscle fatigue on exertional dyspnea in healthy subjects. J Appl Physiol. 2015;118(1):4854. doi:10.1152/japplphysiol.00393.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Smith JREmerson SRKurti SPGandhi KHarms CA. Lung volume and expiratory flow rates from pre- to post-puberty. Eur J Appl Physiol. 2015;115(8):164552. PubMed ID: 25761732 doi:10.1007/s00421-015-3149-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Stark-Leyva KNBeck KCJohnson BD. Influence of expiratory loading and hyperinflation on cardiac output during exercise. J Appl Physiol. 2004;96(5):19207. doi:10.1152/japplphysiol.00756.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Stenekes SJHughes AGregoire MCFrager GRobinson WMMcGrath PJ. Frequency and self-management of pain, dyspnea, and cough in cystic fibrosis. J Pain Symptom Manage. 2009;38(6):83748. PubMed ID: 19819666 doi:10.1016/j.jpainsymman.2009.04.029

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Still LDolen WK. The perception of asthma severity in children. Curr Allergy Asthma Rep. 2016;16(7):50. PubMed ID: 27333779 doi:10.1007/s11882-016-0629-2

  • 65.

    Swain KERosenkranz SKBeckman BHarms CA. Expiratory flow limitation during exercise in prepubescent boys and girls: prevalence and implications. J Appl Physiol. 2010;108(5):126774. doi:10.1152/japplphysiol.00123.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Taddio AKatz JIlersich ALKoren G. Effect of neonatal circumcision on pain response during subsequent routine vaccination. The Lancet. 1997;349(9052):599603. PubMed ID: 9057731 doi:10.1016/S0140-6736(96)10316-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 67.

    van Gent Rvan Essen-Zandvliet LERovers MMKimpen JLde Meer Gvan der Ent CK. Poor perception of dyspnoea in children with undiagnosed asthma. Eur Respir J. 2007;30(5):88791. PubMed ID: 17652315 doi:10.1183/09031936.00031407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 68.

    Von Leupoldt ARiedel FDahme B. The impact of emotions on the perception of dyspnea in pediatric asthma. Psychophysiology. 2006;43(6):6414. PubMed ID: 17076821 doi:10.1111/j.1469-8986.2006.00453.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Wheatley JRWest SCala SJEngel LA. The effect of hyperinflation on respiratory muscle work in acute induced asthma. Eur Respir J 1990;3(6):62532. PubMed ID: 2379573

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    Williams ACCraig KD. Updating the definition of pain. Pain. 2016;157(11):24203. PubMed ID: 27200490 doi:10.1097/j.pain.0000000000000613

  • 71.

    Zutler MSinger JPOmachi TAet al. Relationship of obesity with respiratory symptoms and decreased functional capacity in adults without established COPD. Prim Care Respir J. 2012;21(2):194201. PubMed ID: 22453663 doi:10.4104/pcrj.2012.00028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 109 109 29
Full Text Views 1 1 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar