Moving Forward With Accelerometer-Assessed Physical Activity: Two Strategies to Ensure Meaningful, Interpretable, and Comparable Measures

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Significant advances have been made in the measurement of physical activity in youth over the past decade. Monitors and protocols promote very high compliance, both night and day, and raw measures are available rather than “black box” counts. Consequently, many surveys and studies worldwide now assess children’s physical behaviors (physical activity, sedentary behavior, and sleep) objectively 24 hours a day, 7 days a week using accelerometers. The availability of raw acceleration data in many of these studies is both an opportunity and a challenge. The richness of the data lends itself to the continued development of innovative metrics, whereas the removal of proprietary outcomes offers considerable potential for comparability between data sets and harmonizing data. Using comparable physical activity outcomes could lead to improved precision and generalizability of recommendations for children’s present and future health. The author will discuss 2 strategies that he believes may help ensure comparability between studies and maximize the potential for data harmonization, thereby helping to capitalize on the growing body of accelerometer data describing children’s physical behaviors.

The author is with the Diabetes Research Centre, Leicester General Hospital, University of Leicester, Leicester, United Kingdom; NIHR Leicester Biomedical Research Centre, Leicester, United Kingdom; and the Division of Health Sciences, Alliance for Research in Exercise, Nutrition and Activity (ARENA), Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia.

Address correspondence to alex.rowlands@le.ac.uk.
  • 1.

    Andersen LB, Harro M, Sardinha LB, et al. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (The European Youth Heart Study). Lancet. 2006;368:299–304. PubMed ID: 16860699 doi:10.1016/S0140-6736(06)69075-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Atkin AJ, Biddle SJ, Broyles ST, et al. Harmonising data on the correlates of physical activity and sedentary behaviour in young people: methods and lessons learnt from the International Children’s Accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2017;14:174. doi:10.1186/s12966-017-0631-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bassett DR, Rowlands AV, Trost SG. Calibration and validation of wearable monitors. Med Sci Sports Exerc. 2012;44:32–8. PubMed ID: 22157772 doi:10.1249/MSS.0b013e3182399cf7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Bornstein DB, Beets MW, Byun W, et al. Equating accelerometer estimates of moderate-to-vigorous physical activity: in search of the Rosetta Stone. J Sci Med Sport. 2011;14:404–10. PubMed ID: 21524938 doi:10.1016/j.jsams.2011.03.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Brage S, Burton F, Chastin SFM, Penpraze V, Rowe DA. Introduction to the objective measurement of physical activity and sedentary behaviour. 2015. Available from https://www.researchgate.net/publication/284186564_Introduction_to_the_Objective_Measurement_of_Physical_Activity

    • Export Citation
  • 6.

    Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22:15–23. PubMed ID: 21510586

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Craig R, Mindell J, Hirani V. Health Survey for England 2008: Volume 1, Physical Activity and Fitness. Leeds, UK: The NHS Information Centre for Health and Social Care; 2009.

    • Search Google Scholar
    • Export Citation
  • 8.

    da Silva IC, van Hees VT, Ramires VV, et al. Physical activity levels in three Brazilian birth cohorts as assessed with raw triaxial wrist accelerometry. Int J Epidemiol. 2014;43:1959–68. PubMed ID: 25361583 doi:10.1093/ije/dyu203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Doherty A, Jackson D, Hammerla N, et al. Large scale population assessment of physical activity using wrist worn accelerometers: the UK Biobank Study. PLoS ONE. 2017;12(2):e0169649. PubMed ID: 28146576 doi:10.1371/journal.pone.0169649

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Edwardson CL, Harrington DM, Yates T, et al. A cluster randomised controlled trial to investigate the effectiveness and cost effectiveness of the ‘Girls Active’ intervention: a study protocol. BMC Public Health. 2015;15:526. PubMed ID: 26036965 doi:10.1186/s12889-015-1886-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26:1557–65. PubMed ID: 18949660 doi:10.1080/02640410802334196

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Freedson PS, John D. Comment on “estimating activity and sedentary behavior from an accelerometer on the hip and wrist”. Med Sci Sports Exerc. 2013;45(5):962–3. PubMed ID: 23594509 doi:10.1249/MSS.0b013e31827f024d

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Goodman A, Page AS, Cooper AR. Daylight saving time as a potential public health intervention: an observational study of evening daylight and objectively-measured physical activity among 23,000 children from 9 countries. Int J Behav Nutr Phys Act. 2014;11:84. doi:10.1186/1479-5868-11-84

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Harrison F, Goodman A, van Sluijs EMF, et al. Weather and children’s physical activity; how and why do relationships vary between countries? Int J Behav Nutr Phys Act. 2017;14(1):74. doi:10.1186/s12966-017-0526-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hildebrand M, Van Hees VT, Hansen BH, Ekelund U. Age-group comparability of raw accelerometer output from wrist- and hip-worn monitors. Med Sci Sports Exerc. 2014;46:1816–24. doi:10.1249/MSS.0000000000000289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Ipsos MORI; CLS. Millennium Cohort Study Sixth Sweep (MCS6): Physical Activity: Time Use Diary Harmonised Dataset. London, UK: Centre for Longitudinal Studies, UCL Institute for Education; 2017.

    • Search Google Scholar
    • Export Citation
  • 17.

    Katzmarzyk PT, Barreira TV, Broyles ST, et al. The International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE): design and methods. BMC Public Health. 2013;13:900. PubMed ID: 24079373 doi:10.1186/1471-2458-13-900

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Li X, Kearney PM, Keane E, Harrington JM, Fitzgerald AP. Levels and sociodemographic correlates of accelerometer-based physical activity in Irish children: a cross-sectional study. J Epidemiol Community Health. 2017;71:521–7. PubMed ID: 28130391 doi:10.1136/jech-2016-207691

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Menai M, van Hees VT, Elbaz A, Kivimaki M, Singh-Manoux A, Sabia S. Accelerometer assessed moderate-to-vigorous physical activity and successful ageing: results from the Whitehall II study. Sci Rep. 2017;7:45772. PubMed ID: 28367987 doi:10.1038/srep45772

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Pate RR, Almeida MJ, McIver KL, Pfeiffer KA, Dowda M. Validation and calibration of an accelerometer in preschool children. Obesity. 2006;14(11):2000–6. PubMed ID: 17135617 doi:10.1038/oby.2006.234

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Pavey TG, Gilson ND, Gomersall SR, Clark B, Trost SG. Field evaluation of a random forest classifier for wrist-worn accelerometer data. J Sci Med Sport. 2016;20(1):75–80. PubMed ID: 27372275 doi:10.1016/j.jsams.2016.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Phillips LR, Parfitt CG, Rowlands AV. Calibration of the GENEA accelerometer for assessment of physical activity intensity in children. J Sci Med Sport. 2013;16:124–8. PubMed ID: 22770768 doi:10.1016/j.jsams.2012.05.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Price L, Wyatt K, Lloyd J, et al. Children’s compliance with wrist-worn accelerometry within a cluster-randomised controlled trial: findings from the Healthy Lifestyles Programme. Pediatr Exerc Sci. 2018;30(2):281–7. PubMed ID: 29417877 doi:10.1123/pes.2017-0179

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10(3):150–7. PubMed ID: 11886937 doi:10.1038/oby.2002.24

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Riddoch C, Mattocks C, Deere K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child. 2007;92:963–9. PubMed ID: 17855437 doi:10.1136/adc.2006.112136

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Roman-Viñas B, Chaput JP, Katzmarzyk PT, et al. Proportion of children meeting recommendations for 24-hour movement guidelines and associations with adiposity in a 12-country study. Int J Behav Nutr Phys Act. 2016;13:123. doi:10.1186/s12966-016-0449-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Rowlands AV, Cliff DP, Fairclough SJ, et al. Moving forward with backwards compatibility: translating wrist accelerometer data. Med Sci Sports Exerc. 2016;48:2142–9. doi:10.1249/MSS.0000000000001015

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Rowlands AV, Edwardson CL, Davies MJ, Khunti K, Harrington DM, Yates T. Beyond cut-points: accelerometer metrics that capture the physical activity profile. Med Sci Sports Exerc. 2018;50(6):1323–32. doi:10.1249/MSS.0000000000001561

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rowlands AV, Harrington DM, Bodicoat DM, et al. Compliance of adolescent girls to repeated deployments of wrist-worn accelerometers. Med Sci Sports Exerc. 2018;50(7):1508–17. doi:10.1249/MSS.0000000000001588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Rowlands AV, Mirkes E, Yates T, et al. Accelerometer-assessed physical activity in epidemiology: are monitors equivalent? Med Sci Sports Exerc. 2018;50:257–65. doi:10.1249/MSS.0000000000001435

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Rowlands AV, Olds TS, Hillsdon M, et al. Assessing sedentary behavior with the GENEActiv: introducing the sedentary sphere. Med Sci Sports Exerc. 2014;46:1235–47. doi:10.1249/MSS.0000000000000224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Sampasa-Kanyinga H, Standage M, Tremblay MS, et al. Associations between meeting combinations of 24-h movement guidelines and health-related quality of life in children from 12 countries. Public Health. 2017;153:16–24. PubMed ID: 28818582 doi:10.1016/j.puhe.2017.07.010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Sherar L, Griew P, Esliger D, et al. International Children’s Accelerometry Database (ICAD): design and methods. BMC Public Health. 2011;11:485. PubMed ID: 21693008 doi:10.1186/1471-2458-11-485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Toftager M, Kristensen PL, Oliver M, et al. Accelerometer data reduction in adolescents: effects on sample retention and bias. Int J Behav Nutr Phys Act. 2013;10:140. PubMed ID: 24359480 doi:10.1186/1479-5868-10-140

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Tremblay MS, Carson V, Chaput JP, et al. Canadian 24-hour movement guidelines for children and youth: an integration of physical activity, sedentary behaviour, and sleep. Appl Physiol Nutr Metab. 2016;41(6 suppl 3):S311–27. PubMed ID: 27306437 doi:10.1139/apnm-2016-0151

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Troiano RP, Berrigan D, Dodd KW, Mâsse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40:181–8. doi:10.1249/mss.0b013e31815a51b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Trost SG, Pate RR, Sallis JF, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34:350–5. PubMed ID: 11828247 doi:10.1097/00005768-200202000-00025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tudor-Locke C, Barreira TV, Schuna JM, Katzmarzyk PT. Unique contributions of ISCOLE to the advancement of accelerometry in large studies. Int J Obes Suppl. 2015;5:S53–8. doi:10.1038/ijosup.2015.20

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    van Hees VT, Fang Z, Langford J, et al. Auto-calibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. J Appl Physiol. 2014;117(7):738–44. PubMed ID: 25103964 doi:10.1152/japplphysiol.00421.2014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    van Hees VT, Gorzelniak L, Dean León EC, et al. Separating movement and gravity components in an acceleration signal and implications for the assessment of human daily physical activity. PLoS ONE. 2013;8(4):e61691. PubMed ID: 23626718 doi:10.1371/journal.pone.0061691

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    van Hees VT, Renstron F, Wright A, et al. Estimation of daily energy expenditure in pregnant and non-pregnant women using a wrist-worn tri-axial accelerometer. PLoS ONE. 2011;6(7):e22922. PubMed ID: 21829556 doi:10.1371/journal.pone.0022922

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    van Hees VT, Sabia S, Anderson KN, et al. A novel, open access method to assess sleep duration using a wrist-worn accelerometer. PLoS ONE. 2015;10(11):e0142533. PubMed ID: 26569414 doi:10.1371/journal.pone.0142533

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Vanhelst J, Béghin L, Salleron J, et al. Impact of the choice of threshold on physical activity patterns in free living conditions among adolescents measured using a uniaxial accelerometer: the HELENA study. J Sports Sci. 2014;32:110–5. PubMed ID: 23885661 doi:10.1080/02640414.2013.809473

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    van Kuppevelt D, Heywood J, Hamer M, Sabia S, Fitzsimons E, van Hees V. Segmenting accelerometer data from daily life with unsupervised machine learning.  BioRxiv [Pre-print] doi:10.1101/263046

    • Search Google Scholar
    • Export Citation
  • 45.

    Wake M, Clifford S, York E, et al. Introducing growing up in Australia’s child health checkpoint. A physical and biomarkers module for the longitudinal study of Australian children. Fam Matters. 2014;94:15–23.

    • Search Google Scholar
    • Export Citation
  • 46.

    Welk GJ, McClain J, Ainsworth BE. Protocols for evaluating equivalency of accelerometry-based activity monitors. Med Sci Sports Exerc. 2012;44:S39–49. PubMed ID: 22157773 doi:10.1249/MSS.0b013e3182399d8f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Wolff-Hughes DL, Bassett DR, Fitzhugh EC. Population-referenced percentiles for waist-worn accelerometer-derived total activity counts in U.S. youth: 2003–2006 NHANES. PLoS ONE. 2014;9(12):e115915. PubMed ID: 25531290 doi:10.1371/journal.pone.0115915

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 174 173 25
Full Text Views 39 39 9
PDF Downloads 24 24 8