Onset of Accelerated Muscle Deoxygenation During the 20-m Shuttle Run Test in Boys

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Purpose: This study aimed to compare the relative exercise intensity at which the onset of accelerated muscle deoxygenation occurs during the 20-m shuttle run test (20mSRT) between boys and men and to examine whether the timing of the onset of acceleration appearance is related to 20mSRT performance in boys. Methods: Twenty-four boys performed the 20mSRT, during which concentration changes in oxygenated and deoxygenated hemoglobin and myoglobin (ΔOxy-Hb and ΔDeoxy-Hb, respectively) in the m. vastus lateralis were monitored using a portable near-infrared spectroscopy device. The boys’ data were compared with those of 29 men in a previous study. Results: An onset of accelerated decrease in Δ[Oxy-Hb − Deoxy-Hb] was found in 11 of the 24 boys (45.8%) and 20 of the 29 men (69.0%) and was found at a higher relative exercise intensity in the boys than in the men. The number of laps at which the onset of acceleration occurred correlated with total laps in the boys (r = .87). Conclusions: These findings demonstrate that the onset of accelerated muscle deoxygenation during the 20mSRT occurs at a higher relative exercise intensity in boys than in men. Our findings also show that the timing of the onset of acceleration appearance is associated with 20mSRT performance in boys.

Kume is with the Department of Integrated Arts and Science, National Institute of Technology, Okinawa College, Nago, Okinawa, Japan. Iguchi is with the Department of Bioresources Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa, Japan. Endoh is with the Department of Health and Physical Education, University of the Ryukyus, Nishihara, Okinawa, Japan.

Kume (kome_dai_128@yahoo.co.jp) is corresponding author.
  • 1.

    Anderson CS, Mahon AD. The relationship between ventilatory and lactate thresholds in boys and men. Res Sports Med. 2007;15(3):189–200. PubMed ID: 17987507 doi:10.1080/15438620701525490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Armstrong N, Barker AR, McManus AM. Muscle metabolism changes with age and maturation: how do they relate to youth sport performance? Br J Sports Med. 2015;49(13):860–4. PubMed ID: 25940635 doi:10.1136/bjsports-2014-094491

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Barker AR, Welsman JR, Fulford J, Welford D, Armstrong N. Quadriceps muscle energetics during incremental exercise in children and adults. Med Sci Sports Exerc. 2010;42(7):1303–13. PubMed ID: 20019637 doi:10.1249/MSS.0b013e3181cabaeb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Behnke BJ, McDonough P, Padilla DJ, Musch TI, Poole DC. Oxygen exchange profile in rat muscles of contrasting fibre types. J Physiol. 2003;549(pt 2):597–605. PubMed ID: 12692174 doi:10.1113/jphysiol.2002.035915

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Berg A, Kim SS, Keul J. Skeletal muscle enzyme activities in healthy young subjects. Int J Sports Med. 1986;7(4):236–9. PubMed ID: 3759306 doi:10.1055/s-2008-1025766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Boone J, Vandekerckhove K, Coomans I, Prieur F, Bourgois JG. An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur J Appl Physiol. 2016;116(11–12):2085–102. PubMed ID: 27613650 doi:10.1007/s00421-016-3468-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Coyle EF, Coggan AR, Hopper MK, Walters TJ. Determinants of endurance in well-trained cyclists. J Appl Physiol. 1988;64(6):2622–30. PubMed ID: 3403447 doi:10.1152/jappl.1988.64.6.2622

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Coyle EF, Feltner ME, Kautz SA, et al. Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc. 1991;23(1):93–107. PubMed ID: 1997818 doi:10.1249/00005768-199101000-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Crozara LF, Castro A, De Almeida Neto AF, Laroche DP, Cardozo AC, Gonçalves M. Utility of electromyographic fatigue threshold during treadmill running. Muscle Nerve. 2015;52(6):1030–9. PubMed ID: 25787858 doi:10.1002/mus.24658

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand. 1973;87(4):485–97. PubMed ID: 4269332 doi:10.1111/j.1748-1716.1973.tb05415.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    España-Romero V, Artero EG, Jimenez-Pavón D, et al. Assessing health-related fitness tests in the school setting: reliability, feasibility and safety; the ALPHA study. Int J Sports Med. 2010;31(7):490–7. doi:10.1055/s-0030-1251990

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Fernhall B, Kohrt W, Burkett LN, Walters S. Relationship between the lactate threshold and cross-country run performance in high school male and female runners. Pediatr Exerc Sci. 1996;8(1):37–47. doi:10.1123/pes.8.1.37

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Gotshall RW, Bauer TA, Fahrner SL. Cycling cadence alters exercise hemodynamics. Int J Sports Med. 1996;17(1):17–21. PubMed ID: 8775571 doi:10.1055/s-2007-972802

  • 14.

    Grassi B, Quaresima V. Near-infrared spectroscopy and skeletal muscle oxidative function in vivo in health and disease: a review from an exercise physiology perspective. J Biomed Opt. 2016;21(9):091313. PubMed ID: 27443955 doi:10.1117/1.JBO.21.9.091313

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Grassi B, Quaresima V, Marconi C, Ferrari M, Cerretelli P. Blood lactate accumulation and muscle deoxygenation during incremental exercise. J Appl Physiol. 1999;87(1):348–55. PubMed ID: 10409594 doi:10.1152/jappl.1999.87.1.348

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Kaczor JJ, Ziolkowski W, Popinigis J, Tarnopolsky MA. Anaerobic and aerobic enzyme activities in human skeletal muscle from children and adults. Pediatr Res. 2005;57(3):331–5. PubMed ID: 15611348 doi:10.1203/01.PDR.0000150799.77094.DE

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Kitada T, Machida S, Naito H. Influence of muscle fibre composition on muscle oxygenation during maximal running. BMJ Open Sport Exerc Med. 2015;1(1):000062. PubMed ID: 27900139 doi:10.1136/bmjsem-2015-000062

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Koch G. Muscle blood flow after ischemic work and during bicycle ergometer work in boys aged 12 years. Acta Paediatr Belg. 1974;28(suppl):29–39.

  • 19.

    Kume D, Iguchi A, Endoh H. Accelerated point of muscle deoxygenation during the 20-m shuttle run test. Clin Physiol Funct Imaging. 2018;38(3):390–5. PubMed ID: 28414877 doi:10.1111/cpf.12426

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Léger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101. doi:10.1080/02640418808729800

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Lexell J, Sjöström M, Nordlund AS, Taylor CC. Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve. 1992;15(3):404–9. PubMed ID: 1557091 doi:10.1002/mus.880150323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Long D, Dotan R, Pitt B, McKinlay B, O’Brien TD, Tokuno C, Falk B. The electromyographic threshold in girls and women. Pediatr Exerc Sci. 2017;29(1):84–93. PubMed ID: 27427951 doi:10.1123/pes.2016-0056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lucía A, Sánchez O, Carvajal A, Chicharro JL. Analysis of the aerobic–anaerobic transition in elite cyclists during incremental exercise with the use of electromyography. Br J Sports Med. 1999;33(3):178–85. doi:10.1136/bjsm.33.3.178

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    McDonough P, Behnke BJ, Padilla DJ, Musch TI, Poole DC. Control of microvascular oxygen pressures in rat muscles comprised of different fibre types. J Physiol. 2005;563(pt 3):903–13. PubMed ID: 15637098 doi:10.1113/jphysiol.2004.079533

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Meckel Y, Harel U, Michaely Y, Eliakim A. Effects of a very short-term preseason training procedure on the fitness of soccer players. J Sports Med Phys Fitness. 2014;54(4):432–40. PubMed ID: 25034547

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Mizuno M, Tokizawa K, Iwakawa T, Muraoka I. Inflection points of cardiovascular responses and oxygenation are correlated in the distal but not the proximal portions of muscle during incremental exercise. J Appl Physiol. 2004;97(3):867–73. PubMed ID: 15107412 doi:10.1152/japplphysiol.00213.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Noonan RJ, Boddy LM, Knowles ZR, Fairclough SJ. Cross-sectional associations between high-deprivation home and neighbourhood environments, and health-related variables among Liverpool children. BMJ Open. 2016;6(1):e008693. PubMed ID: 26769779 doi:10.1136/bmjopen-2015-008693

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Osawa T, Kime R, Hamaoka T, Katsumura T, Yamamoto M. Attenuation of muscle deoxygenation precedes EMG threshold in normoxia and hypoxia. Med Sci Sports Exerc. 2011;43(8):1406–13. PubMed ID: 21266933 doi:10.1249/MSS.0b013e3182100261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Ostojic SM, Mazic S, Dikic N. Profiling in basketball: physical and physiological characteristics of elite players. J Strength Cond Res. 2006;20(4):740–4. PubMed ID: 17149984

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Pfitzinger P, Freedson P. Blood lactate responses to exercise in children: part 2. Lactate threshold. Pediatr Exerc Sci. 1997;9(4):299–307. doi:10.1123/pes.9.4.299

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Pianosi P, Seargeant L, Haworth JC. Blood lactate and pyruvate concentrations, and their ratio during exercise in healthy children: developmental perspective. Eur J Appl Physiol Occup Physiol. 1995;71(6):518–22. PubMed ID: 8983919 doi:10.1007/BF00238554

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Pitt B, Dotan R, Millar J, Long D, Tokuno C, O’Brien T, Falk B. The electromyographic threshold in boys and men. Eur J Appl Physiol. 2015;115(6):1273–81. PubMed ID: 25588894 doi:10.1007/s00421-015-3100-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Ramírez-Vélez R, Rodrigues-Bezerra D, Correa-Bautista JE, Izquierdo M, Lobelo F. Reliability of health-related physical fitness tests among Colombian children and adolescents: the FUPRECOL study. PLoS ONE. 2015;10(10):e0140875. doi:10.1371/journal.pone.0140875

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Ratel S, Blazevich AJ. Are prepubertal children metabolically comparable to well-trained adult endurance athletes? Sports Med. 2017;47(8):1477–85. PubMed ID: 28044282 doi:10.1007/s40279-016-0671-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Rowland TW, Auchinachie JA, Keenan TJ, Green GM. Physiologic responses to treadmill running in adult and prepubertal males. Int J Sports Med. 1987;8(4):292–7. PubMed ID: 3667027 doi:10.1055/s-2008-1025672

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Takagi S, Kime R, Midorikawa T, Niwayama M, Sakamoto S, Katsumura T. Skeletal muscle deoxygenation responses during treadmill exercise in children. Adv Exp Med Biol. 2014;812:341–6. PubMed ID: 24729252

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Turley KR, Wilmore JH. Cardiovascular responses to treadmill and cycle ergometer exercise in children and adults. J Appl Physiol. 1997;83(3):948–57. PubMed ID: 9292484 doi:10.1152/jappl.1997.83.3.948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wang B, Tian Q, Zhang Z, Gong H. Comparisons of local and systemic aerobic fitness parameters between finswimmers with different athlete grade levels. Eur J Appl Physiol. 2012;112(2):567–78. PubMed ID: 21611824 doi:10.1007/s00421-011-2007-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Wang B, Xu G, Tian Q, et al. Differences between the vastus lateralis and gastrocnemius lateralis in the assessment ability of breakpoints of muscle oxygenation for aerobic capacity indices during an incremental cycling exercise. J Sports Sci Med. 2012;11(4):606–13. PubMed ID: 24150069

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 71 71 28
Full Text Views 2 2 0
PDF Downloads 1 1 0