The Effects of a 12-Week Combined Exercise Training Program on Arterial Stiffness, Vasoactive Substances, Inflammatory Markers, Metabolic Profile, and Body Composition in Obese Adolescent Girls

in Pediatric Exercise Science

Click name to view affiliation

Alexei WongMarymount University

Search for other papers by Alexei Wong in
Current site
Google Scholar
PubMed
Close
*
,
Marcos A. Sanchez-GonzalezLarkin Community Hospital

Search for other papers by Marcos A. Sanchez-Gonzalez in
Current site
Google Scholar
PubMed
Close
*
,
Won-Mok SonPusan National University

Search for other papers by Won-Mok Son in
Current site
Google Scholar
PubMed
Close
*
,
Yi-Sub KwakDong-Eui University

Search for other papers by Yi-Sub Kwak in
Current site
Google Scholar
PubMed
Close
*
, and
Song-Young ParkPusan National University
University of Nebraska-Omaha

Search for other papers by Song-Young Park in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: Childhood and adolescent obesity is a major international public health crisis. It is crucial to prevent the negative effects of obesity at an early age by implementing appropriate lifestyle interventions, such as exercise training. We evaluated the effects of a combined resistance and aerobic exercise training (CET) regimen on arterial stiffness, vasoactive substances, inflammatory markers, metabolic profile, and body composition in obese adolescent girls. Methods: A total of 30 obese adolescent girls were randomly assigned to a CET (n = 15) or a control group (n = 15). The CET group trained for 3 days per week. Plasma nitric oxide, endothelin-1, C-reactive protein, arterial stiffness, glucose, insulin, the adiponectin/leptin ratio, and body fat were measured before and after 12 weeks. Results: There were significant increases (P < .05) in nitric oxide (4.0 μM) and adiponectin/leptin ratio (0.33); and decreases (P < .05) in arterial stiffness (−1.0 m/s), C-reactive protein (−0.5 mg/L), glucose (−1.2 mmol/L), insulin (−17.1 μU/mL), and body fat (−3.6%) following CET compared with control. There were no significant changes in endothelin-1 after CET or control. Conclusions: The findings of this study indicate that CET improves arterial stiffness, nitric oxide, and inflammatory and metabolic markers in obese adolescent girls. CET may have important health implications for the prevention of atherosclerosis at an early age.

Wong is with the Department of Health and Human Performance, Marymount University, Arlington, VA, USA. Sanchez-Gonzalez is with the Division of Clinical & Translational Research, Larkin Community Hospital, South Miami, FL, USA. Son and Park are with the Department of Physical Education, Pusan National University, Busan, Korea. Kwak is with the Department of Physical Education, Dong-Eui University, Busan, Korea. Park is also with the School of Health and Kinesiology, University of Nebraska-Omaha, Omaha, NE, USA.

Park (song-youngpark@unomaha.edu) is corresponding author.
  • Collapse
  • Expand
  • 1.

    ACSM’s Resource Manual for Guidelines for Exercise Testing and Prescription. 10th ed. Baltimore, MD: American College of Sports Medicine; 2017.

    • Search Google Scholar
    • Export Citation
  • 2.

    Adkisson EJ, Casey DP, Beck DT, Gurovich AN, Martin JS, Braith RW. Central, peripheral and resistance arterial reactivity: fluctuates during the phases of the menstrual cycle. Exp Biol Med (Maywood). 2010;235:1118. PubMed ID: 20404025 doi:10.1258/ebm.2009.009186

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bacha F, Saad R, Gungor N, Arslanian SA. Adiponectin in youth: relationship to visceral adiposity, insulin sensitivity, and β-cell function. Diabetes Care. 2004;27:54752. PubMed ID: 14747242 doi:10.2337/diacare.27.2.547

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bell LM, Watts K, Siafarikas A, et al. Exercise alone reduces insulin resistance in obese children independently of changes in body composition. J Clin Endocrinol Metab. 2007;92:42305. PubMed ID: 17698905 doi:10.1210/jc.2007-0779

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Berenson GS, Srinivasan SR, Bao W, Newman WP, Tracy RE, Wattigney W. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa heart study. N Engl J Med. 1998;338:16506. PubMed ID: 9614255 doi:10.1056/NEJM199806043382302

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Brambilla P, Bedogni G, Moreno LA, et al. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes. 2006;30:2330. doi:10.1038/sj.ijo.0803163

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Bruce RA. Multi-stage treadmill test of maximal and sub maximal exercise. In: American Heart Association's Committee on Exercise, ed. Exercise Testing and Training of Apparently Healthy Individuals: A Handbook for Physicians. Dallas, TX: American Heart Association; 1972.

    • Search Google Scholar
    • Export Citation
  • 8.

    Campos RM, de Mello MT, Tock L, et al. Aerobic plus resistance training improves bone metabolism and inflammation in adolescents who are obese. J strength Cond Res. 2014;28:75866. PubMed ID: 24263653 doi:10.1519/JSC.0b013e3182a996df

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Ceddia RB. Direct metabolic regulation in skeletal muscle and fat tissue by leptin: implications for glucose and fatty acids homeostasis. Int J Obes (Lond). 2005;29:117583. PubMed ID: 16030519 doi:10.1038/sj.ijo.0803025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Cook S, Weitzman M, Auinger P, Nguyen M, Dietz WH. Prevalence of a metabolic syndrome phenotype in adolescents: findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch Pediatr Adolesc Med. 2003;157:8217. PubMed ID: 12912790 doi:10.1001/archpedi.157.8.821

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    de Mello M, de Piano A, Carnier J, et al. Long-term effects of aerobic plus resistance training on the metabolic syndrome and adiponectinemia in obese adolescents. J Clin Hypertens. 2011;13:34350. PubMed ID: 21545395 doi:10.1111/j.1751-7176.2010.00388.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    de Piano A, de Mello MT, Sanches PD, et al. Long-term effects of aerobic plus resistance training on the adipokines and neuropeptides in nonalcoholic fatty liver disease obese adolescents. Eur J Gastroenterol Hepatol. 2012;24(11):131324. PubMed ID: 22932160 doi:10.1097/MEG.0b013e32835793ac

    • Search Google Scholar
    • Export Citation
  • 13.

    Eisenstein E, Shaw L, Nelson C, Anstrom K, Hakim Z, Mark D. Obesity and long-term clinical and economic outcomes in coronary artery disease patients. Obes Res. 2002;10:8391. PubMed ID: 11836453 doi:10.1038/oby.2002.14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Farpour-Lambert NJ, Aggoun Y, Marchand LM, Martin XE, Herrmann FR, Beghetti M. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children. J Am Coll Cardiol. 2009;54:2396406. PubMed ID: 20082930 doi:10.1016/j.jacc.2009.08.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Figueroa A, Park SY, Seo DY, Sanchez-Gonzalez MA, Baek YH. Combined resistance and endurance exercise training improves arterial stiffness, blood pressure, and muscle strength in postmenopausal women. Menopause. 2011;18:9804. PubMed ID: 21540753 doi:10.1097/gme.0b013e3182135442

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Flegal K, Ogden C, Yanovski J, Borrud L. High adiposity and high body mass index-for-age in US children and adolescents overall and by race-ethnic group. Am J Clin Nutr. 2010;91:10206. PubMed ID: 20164313 doi:10.3945/ajcn.2009.28589

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Giannopoulou I, Fernhall B, Carhart R, et al. Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism. 2005;54:86675. PubMed ID: 15988694 doi:10.1016/j.metabol.2005.01.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Green DJ, Maiorana A, O’Driscoll G, Taylor R. Effect of exercise training on endothelium-derived nitric oxide function in humans. J Physiol. 2004;561:125. PubMed ID: 15375191 doi:10.1113/jphysiol.2004.068197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Herder C, Schneitler S, Rathmann W, et al. Low-grade inflammation, obesity, and insulin resistance in adolescents. J Clin Endocrinol Metab. 2007;92:456974. PubMed ID: 17911172 doi:10.1210/jc.2007-0955

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Ho SS, Dhaliwal SS, Hills AP, Pal S. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health. 2012;12:704. PubMed ID: 23006411 doi:10.1186/1471-2458-12-704

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Hokama Y, Nakamura RM. C-Reactive protein: current status and future perspectives. J Clin Lab Anal. 1987;1:1527. doi:10.1002/jcla.1860010104

  • 22.

    Inoue M, Maehata E, Yano M, Taniyama M, Suzuki S. Correlation between the adiponectin-leptin ratio and parameters of insulin resistance in patients with type 2 diabetes. Metabolism. 2005;54:2816. PubMed ID: 15736103 doi:10.1016/j.metabol.2004.09.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Kawano H, Tanaka H, Miyachi M. Resistance training and arterial compliance: keeping the benefits while minimizing the stiffening. J Hypertens. 2006;24:17539. PubMed ID: 16915024 doi:10.1097/01.hjh.0000242399.60838.14

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kim H, Kim SH, Lee HY, Cho BG, Park JU. Effect of aerobic exercise and resistance exercise on leptin and blood lipids in obesity girls students. Med Sci Sports Exerc. 2001;33:34.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Lee YH, Song YW, Kim HS, et al. The effects of an exercise program on anthropometric, metabolic, and cardiovascular parameters in obese children. Korean Circ J. 2010;40:17984. PubMed ID: 20421958 doi:10.4070/kcj.2010.40.4.179

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Leon-Pedroza JI, Gonzalez-Tapia LA, Del Olmo-Gil E, Castellanos-Rodriguez D, Escobedo G, Gonzalez-Chavez A. Low-grade systemic inflammation and the development of metabolic diseases: from the molecular evidence to the clinical practice. Cir Cir. 2015;83(6):54351. PubMed ID: 26159364 doi:10.1016/j.circir.2015.05.041

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Magarey A, Daniels L, Boulton T, Cockington R. Predicting obesity in early adulthood from childhood and parental obesity. Int J Obes Relat Metab Disord. 2003;27:50513. PubMed ID: 12664084 doi:10.1038/sj.ijo.0802251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Masaki TM. Endothelins. Essays Biochem. 1992;27:7989. PubMed ID: 1425605

  • 29.

    Masquio DC, de Piano A, Campos RM, Sanches PL, Carnier J, Corgosinho FC. The role of multicomponent therapy in the metabolic syndrome, inflammation and cardiovascular risk in obese adolescents. Br J Nutr. 2015;113:192030. PubMed ID: 25907896 doi:10.1017/S0007114515001129

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Matsuzawa Y, Funahashi T, Nakamura T. Molecular mechanism of metabolic syndrome X: contribution of adipocytokines adipocyte-derived bioactive substances. Ann NY Acad Sci. 1999;892:14654. PubMed ID: 10842660 doi:10.1111/j.1749-6632.1999.tb07793.x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Matthews DR, Hosker JP, Rudenski S, Naylor B, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:4129. PubMed ID: 3899825 doi:10.1007/BF00280883

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Morris NM, Udry JR. Validation of a self-administered instrument to assess stage of adolescent development. J Youth Adol. 1980;9:27180. PubMed ID: 24318082 doi:10.1007/BF02088471

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Nassis GP, Papantakou K, Skenderi K, et al. Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls. Metabolism. 2005;54:14729. PubMed ID: 16253636 doi:10.1016/j.metabol.2005.05.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss. Arterioscler Thromb Vasc Biol. 2006;26(5):96876. PubMed ID: 16627822 doi:10.1161/01.ATV.0000216787.85457.f3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Racil G, Zouhal H, Elmontassar W, et al. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl Physiol Nutr Metab. 2016;41:1039. PubMed ID: 26701117 doi:10.1139/apnm-2015-0384

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ridha M, Nourse SE, Tierney ES. Pediatric interventions using noninvasive vascular health indices. Hypertension. 2015;65:94955. PubMed ID: 25801875 doi:10.1161/HYPERTENSIONAHA.114.04926

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Son WM, Sung KD, Cho JM, Park SY. Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension. Menopause. 2017;24(3):2628. PubMed ID: 27779565 doi:10.1097/GME.0000000000000765

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tomiyama H, Matsumoto C, Shiina K, Yamashina A. Brachial-ankle PWV: current status and future directions as a useful marker in the management of cardiovascular disease and/or cardiovascular risk factors. J Atheroscler Thromb. 2016;23(2):12846. PubMed ID: 26558401 doi:10.5551/jat.32979

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Torrance B, McGuire KA, Lewanczuk R, McGavock J. Overweight, physical activity and high blood pressure in children: a review of the literature. Vasc Health Risk Manag. 2007;3:13949. PubMed ID: 17583184

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Tziomalos K, Athyros VG, Karagiannis A, Mikhailidis DP. Endothelial dysfunction in metabolic syndrome: prevalence, pathogenesis and management. Nutr Metab Cardiovasc Dis. 2010;20(2):1406. PubMed ID: 19833491 doi:10.1016/j.numecd.2009.08.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Van Der Heijden GJ, Toffolo G, Manesso E, Sauer PJ, Sunehag AL. Aerobic exercise increases peripheral and hepatic insulin sensitivity in sedentary adolescents. J Clin Endocrinol Metab. 2009;94:42929. PubMed ID: 19808855 doi:10.1210/jc.2009-1379

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Vita JA, Keaney JF. Endothelial function: a barometer for cardiovascular risk? Circulation. 2002;106:6402. PubMed ID: 12163419 doi:10.1161/01.CIR.0000028581.07992.56

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Watts K, Beye P, Siafarikas A, et al. Exercise training normalizes vascular dysfunction and improves central adiposity in obese adolescents. J Am Coll Cardiol. 2004;43:18237. PubMed ID: 15145107 doi:10.1016/j.jacc.2004.01.032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Weber T, Auer J, O’Rourke MF, et al. Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation. 2004;109:1849. PubMed ID: 14662706 doi:10.1161/01.CIR.0000105767.94169.E3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Weinstein Y, Kamerman T, Berry E, Falk B. Mechanical efficiency of normal-weight prepubertal boys predisposed to obesity. Med Sci Sports Exerc. 2004;36:56773. PubMed ID: 15064582 doi:10.1249/01.MSS.0000121958.99985.A5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Wing RR, Lang W, Wadden TA, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34:14816. PubMed ID: 21593294 doi:10.2337/dc10-2415

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8:128895. PubMed ID: 12368907 doi:10.1038/nm788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Yambe M, Tomiyama H, Yamada J, et al. Arterial stiffness and progression to hypertension in Japanese male subjects with high normal blood pressure. J Hypertens. 2007;25:8793. PubMed ID: 17143178 doi:10.1097/01.hjh.0000254375.73241.e2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3652 1266 119
Full Text Views 99 10 2
PDF Downloads 87 8 2