Effects of 9 Months of Martial Arts Training on Cardiac Autonomic Modulation in Healthy Children and Adolescents

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Purpose: The aim of the study was to evaluate the cardiac autonomic modulation after 9 months of martial arts practice in healthy children and adolescents. Method: The study included 59 children and adolescents who were divided into 3 groups: judo, Muay Thai, and control. Heart rate variability was measured by a heart rate monitor, model Polar RS800CX. The intervention occurred twice a week on nonconsecutive days, lasting 60 minutes each session. A 1-way analysis of variance was used to compare participants at baseline. The comparisons between groups at baseline and after the intervention were carried out by a 2-way analysis of variance for repeated measures. Results: After 9 months of intervention, significant increases were observed for root mean square successive differences, with higher values post compared with baseline (19.5%; P = .04). For SD1, an interaction effect was observed, with increased posttraining values compared with baseline (24.1%; P = .04) for the judo group. Qualitative analysis of the Poincaré plot showed greater dispersion of RR intervals, mainly beat to beat, after the judo intervention compared with the baseline. The Muay Thai and control groups presented no improvement. Conclusion: After 9 months of intervention, there were increases in cardiac autonomic modulation of children and adolescents participating in judo training. The practice of martial arts, such as judo, can be encouraged from an early age to improve cardiovascular system functioning, possibly providing protection against cardiovascular problems.

Suetake, Saraiva, da Silva, Bernardo, Gomes, Vanderlei, and Christofaro are with the School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil. Franchini is with the Sports Department, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil.

Suetake (vinicius_suetake9@hotmail.com) is corresponding author.
  • 1.

    Acharya UR, Joseph KP, Kannathal N, Lim CM, Suri JS. Heart rate variability: a review. Med Eng Phys. 2006;44(12):1031–51.

  • 2.

    Aeschbacher S, Bossard M, Repilado FJ, et al. Healthy lifestyle and heart rate variability in young adults. Eur J Prev Cardiol. 2016;23(10):1037–44. PubMed ID: 26701874 doi:10.1177/2047487315623708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Agostinete RR, Maillane-Vanegas S, Lynch KR, et al. The impact of training load on bone mineral density of adolescent swimmers: a structural equation modeling approach. Pediatr Exerc Sci. 2017;29(4):520–8. PubMed ID: 28605234 doi:10.1123/pes.2017-0008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Aubert AE, Seps B, Beckers F. Heart rate variability in athletes. Sports Med. 2003;33(12):889–19. PubMed ID: 12974657 doi:10.2165/00007256-200333120-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Benbenek-Klupa T, Matejko B, Klupa T. Metabolic control in type 1 diabetes patients practicing combat sports: at least two-year follow-up study. Springerplus. 2015;4:133. PubMed ID: 25825689 doi:10.1186/s40064-015-0919-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Borg G, Hassmén P, Lagerström M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol Occup Physiol. 1987;56:679–85. PubMed ID: 3678222 doi:10.1007/BF00424810

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bridge CA, Santos JF, Chaabène H, Pieter W, Franchini E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014;44:713–33. PubMed ID: 24549477 doi:10.1007/s40279-014-0159-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Carter JB, Banister EW, Blaber AP. Effect of endurance exercise on autonomic control of heart rate. Sports Med. 2003;33:33–46. PubMed ID: 12477376 doi:10.2165/00007256-200333010-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cayres SU, Vanderlei LC, Rodrigues AM, et al. Sports practice is related to parasympathetic activity in adolescents. Rev Paul Pediatr. 2015;33:174–80. PubMed ID: 25887927 doi:10.1016/j.rpped.2014.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chai X, Wang B, Zhang Z, Wang W. Study on the optimum order of autoregressive models for heart rate variability analysis. J Biomed Eng. 2015;32(5):958–64.

    • Search Google Scholar
    • Export Citation
  • 11.

    Chowdhary S, Townend JN. Role of nitric oxide in the regulation of cardiovascular autonomic control. Clin Sci. 1999;97(1):5–17. doi:10.1042/cs0970005

  • 12.

    Da Silva VP, Oliveira NA, Silveira H, Mello RG, Deslandes AC. Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review. Ann Noninvasive Electrocardiol. 2015;20(2):108–18. PubMed ID: 25424360 doi:10.1111/anec.12237

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Dong JG. The role of heart rate variability in sports physiology. Exp Ther Med. 2016;11(5):1531–6. PubMed ID: 27168768 doi:10.3892/etm.2016.3104

  • 14.

    Faulkner MS, Hathaway D, Tolley B. Cardiovascular autonomic function in healthy adolescents. Heart Lung. 2003;32:10–22. PubMed ID: 12571544 doi:10.1067/mhl.2003.6

  • 15.

    Fernandes L, Oliveira J, Soares-Miranda L, Rebelo A, Brito J. Regular football practice improves autonomic cardiac function in male children. Asian J Sports Med. 2015;6:24037. PubMed ID: 26448848 doi:10.5812/asjsm.24037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Giacon TR, Vanderlei FM, Christofaro DG, Vanderlei LC. Impact of diabetes type 1 in children on autonomic modulation at rest and in response to the active orthostatic test. PLoS ONE. 2016;11(10):e0164375. PubMed ID: 27788152 doi:10.1371/journal.pone.0164375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hedelin R, Wiklund U, Bjerle P, Henriksson-Larsén K. Pre-and post-season heart rate variability in adolescent cross-country skiers. Scand J Med Sci Sports. 2000;10(5):298–303. PubMed ID: 11001398 doi:10.1034/j.1600-0838.2000.010005298.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hill LK, Hu DD, Koenig J, et al. Ethnic differences in resting heart rate variability: a systematic review and meta-analysis. PsychosomMed. 2015;77:16–25.

    • Search Google Scholar
    • Export Citation
  • 19.

    Jeemon P, Reddy KS. Social determinants of cardiovascular disease outcomes in Indian. Indian J Med Res. 2010;132:617–22. PubMed ID: 21150014

  • 20.

    Julio UF, Panissa VLG, Esteves JV, Cury RL, Agostinho MF, Franchini E. Energy-system contributions to simulated judo matches. Int J Sports Physiol Perform. 2017;12(5):676–83. PubMed ID: 27736247 doi:10.1123/ijspp.2015-0750

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jung HC, Lee S, Kang HJ, et al. Taekwondo training improves CVD risk factors in obese male adolescents. Archi Budo. 2016;12:85–92.

  • 22.

    Kiviniemi AM, Hautala AJ, Kinnunen H, Tulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101(6):743–51. PubMed ID: 17849143 doi:10.1007/s00421-007-0552-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Koopman JJ, van Bodegom D, Maan AC, et al. Heart rate variability, but not heart rate, is associated with handgrip strength and mortality in older Africans at very low cardiovascular risk: a population-based study. Int J Cardiol. 2015;187:559–61. PubMed ID: 25863303 doi:10.1016/j.ijcard.2015.03.383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Leicht AS, Allen GD. Moderate-term reproducibility of heart rate variability during rest and light to moderate exercise in children. Braz J Med Biol Res. 2008;41:627–33. PubMed ID: 18719745 doi:10.1590/S0100-879X2008000700013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lu WA, Kuo CD. Comparison of the effects of Tai Chi Chuan and Wai Tan Kung exercises on autonomic nervous system modulation and on hemodynamics in elder adults. Am J Chin Med. 2006;34:959–68. PubMed ID: 17163585 doi:10.1142/S0192415X06004430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lu WA, Kuo CD. Breathing frequency-independent effect of Tai Chi Chuan on autonomic modulation. Clin Auton Res. 2014;24:47–52. PubMed ID: 24509942 doi:10.1007/s10286-014-0224-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Malina RM, Choh AC, Czerwinski SA, Chumlea WC. Validation of maturity offset in the fels longitudinal study. Pediatr Exerc Sci. 2016;28:439–55. PubMed ID: 26757350 doi:10.1123/pes.2015-0090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mandigout S, Melin A, Fauchier L, N’Guyen LD, Courteix D, Obert P. Physical training increases heart rate variability in healthy prepubertal children. Eur J Clin Invest. 2002;32:479–87. PubMed ID: 12153547 doi:10.1046/j.1365-2362.2002.01017.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Millar PJ, Levy AS, McGowan CL, McCartney N, MacDonald MJ. Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sports. 2013;23:620–6.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34:689–94. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nagai N, Hamada T, Kimura T, Moritani T. Moderate physical exercise increases cardiac autonomic nervous system activity in children with low heart rate variability. Childs Nerv Syst. 2004;20:209–14. PubMed ID: 15034730 doi:10.1007/s00381-004-0915-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ogliari G, Mahinrad S, Stott DJ, et al. Resting heart rate, heart rate variability and functional decline in old age. CMAJ. 2015;187(15):E442–9. doi:10.1503/cmaj.150462

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Radespiel-Tröger M, Rauh R, Mahlke C, Gottschalk T, Mück-Weymann M. Agreement of two different methods for measurement of heart rate variability. Clin Auton Res. 2003;13:99–102. doi:10.1007/s10286-003-0085-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Radtke T, Khattab K, Brugger N, Eser P, Saner H, Wilhelm M. High-volume sports club participation and autonomic nervous system activity in children. Eur J Clin Invest. 2013;43:821–8. PubMed ID: 23713897 doi:10.1111/eci.12112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ramos JS, Dalleck LC, Tjonna AE, Beetham KS, Coombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015;45:679–92. PubMed ID: 25771785 doi:10.1007/s40279-015-0321-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Sato S, Makita S, Uchida R, Ishihara S, Masuda M. Effect of Tai Chi training on baroreflex sensitivity and heart rate variability in patients with coronary heart disease. Int Heart J. 2010;51:238–41. doi:10.1536/ihj.51.238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Serra-Añó P, Montesinos LL, Morales J, et al. Heart rate variability in individuals with thoracic spinal cord injury. Spinal Cord. 2015;53(1):59–63. doi:10.1038/sc.2014.207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Silva CC, Pereira LM, Cardoso JR, Moore JP, Nakamura FY. The Effect of physical training on heart rate variability in healthy children: a systematic review with meta-analysis. Pediatr Exerc Sci. 2014;26:147–58. PubMed ID: 24722980 doi:10.1123/pes.2013-0063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sinoway L, Shenberger J, Leaman G, et al. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise. J Appl Physiol. 1996;81:1778–84. PubMed ID: 8904599 doi:10.1152/jappl.1996.81.4.1778

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Soares AH, Farah BQ, Cucato GG, et al. Is the algorithm used to process heart rate variability data clinically relevant? Analysis in male adolescents. Einstein. 2016;14:196–201. PubMed ID: 29790942 doi:10.1590/S1679-45082016AO3683

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Somers VK, Leo KC, Shields R, Clary M, Mark AL. Forearm endurance training attenuates sympathetic nerve response to isometric handgrip in normal humans. J Appl Physiol. 1992;72:1039–43. PubMed ID: 1568957 doi:10.1152/jappl.1992.72.3.1039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Sotiriou P, Kouidi E, Samaras T, Deligiannis A. Linear and non-linear analysis of heart rate variability in master athletes and healthy middle-aged non-athletes. Med Eng Phys. 2013;35(11):1676–81. PubMed ID: 23867807 doi:10.1016/j.medengphy.2013.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Sztajzel J, Jung M, Sievert K., De Luna AB. Cardiac autonomic profile in different sports disciplines during all-day activity. J Sports Med Phys Fitness. 2008;48:495–501. PubMed ID: 18997654

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Taralov ZZ, Terziyski KV, Kostianev SS. Heart rate variability as a method for assessment of the autonomic nervous system and the adaptations to different physiological and pathological conditions. Folia Med. 2015;57:173–80.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Taylor AC, McCartney N, Kamath MV, Wiley RL. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc. 2003;35(2):251–6. PubMed ID: 12569213 doi:10.1249/01.MSS.0000048725.15026.B5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Townend JN, al-Ani M, West JN, Littler WA, Coote JH. Modulation of cardiac autonomic control in humans by angiotensin II. Hypertension. 1995;25(6):1270–5. PubMed ID: 7768573 doi:10.1161/01.HYP.25.6.1270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Tulppo MP, Mäkikallio TH, Seppänen T, Laukkanen RT, Huikuri HV. Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol. 1998;274(2, Pt 2):H424–9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Vanderlei LC, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009;24:205–17. PubMed ID: 19768301 doi:10.1590/S0102-76382009000200018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Vanderlei LC, Pastre CM, Júnior IF, de Godoy MF. Fractal correlation of heart rate variability in obese children. Auton Neurosci. 2010;155(1–2):125–9. PubMed ID: 20211587 doi:10.1016/j.autneu.2010.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Van Mechelen W, Twisk JW, Van Lenthe FJ, Post GB, Snel J, Kemper HC. Longitudinal relationships between resting heart rate and biological risk factors for cardiovascular disease: the Amsterdam growth and health study. J Sports Sci. 1998;16:17–23. doi:10.1080/026404198366641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Vasconcellos F, Seabra A, Cunha F, et al. Health markers in obese adolescents improved by a 12-week recreational soccer program: a randomised controlled trial. J Sports Sci. 2016;34:564–75. PubMed ID: 26208409 doi:10.1080/02640414.2015.1064150

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Vinet A, Beck L, Nottin S, Obert P. Effect of intensive training on heart rate variability in prepubertal swimmers. Eur J Clin Invest. 2005;35(10):610–14. PubMed ID: 16178879 doi:10.1111/j.1365-2362.2005.01557.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 152 153 45
Full Text Views 5 5 0
PDF Downloads 1 1 0