Effects of 9 Months of Martial Arts Training on Cardiac Autonomic Modulation in Healthy Children and Adolescents

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: The aim of the study was to evaluate the cardiac autonomic modulation after 9 months of martial arts practice in healthy children and adolescents. Method: The study included 59 children and adolescents who were divided into 3 groups: judo, Muay Thai, and control. Heart rate variability was measured by a heart rate monitor, model Polar RS800CX. The intervention occurred twice a week on nonconsecutive days, lasting 60 minutes each session. A 1-way analysis of variance was used to compare participants at baseline. The comparisons between groups at baseline and after the intervention were carried out by a 2-way analysis of variance for repeated measures. Results: After 9 months of intervention, significant increases were observed for root mean square successive differences, with higher values post compared with baseline (19.5%; P = .04). For SD1, an interaction effect was observed, with increased posttraining values compared with baseline (24.1%; P = .04) for the judo group. Qualitative analysis of the Poincaré plot showed greater dispersion of RR intervals, mainly beat to beat, after the judo intervention compared with the baseline. The Muay Thai and control groups presented no improvement. Conclusion: After 9 months of intervention, there were increases in cardiac autonomic modulation of children and adolescents participating in judo training. The practice of martial arts, such as judo, can be encouraged from an early age to improve cardiovascular system functioning, possibly providing protection against cardiovascular problems.

Suetake, Saraiva, da Silva, Bernardo, Gomes, Vanderlei, and Christofaro are with the School of Technology and Sciences, São Paulo State University (UNESP), Presidente Prudente, São Paulo, Brazil. Franchini is with the Sports Department, School of Physical Education and Sports, University of São Paulo, São Paulo, Brazil.

Suetake (vinicius_suetake9@hotmail.com) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Acharya URJoseph KPKannathal NLim CMSuri JS. Heart rate variability: a review. Med Eng Phys. 2006;44(12):103151.

  • 2.

    Aeschbacher SBossard MRepilado FJet al. Healthy lifestyle and heart rate variability in young adults. Eur J Prev Cardiol. 2016;23(10):103744. PubMed ID: 26701874 doi:10.1177/2047487315623708

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Agostinete RRMaillane-Vanegas SLynch KRet al. The impact of training load on bone mineral density of adolescent swimmers: a structural equation modeling approach. Pediatr Exerc Sci. 2017;29(4):5208. PubMed ID: 28605234 doi:10.1123/pes.2017-0008

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Aubert AESeps BBeckers F. Heart rate variability in athletes. Sports Med. 2003;33(12):88919. PubMed ID: 12974657 doi:10.2165/00007256-200333120-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Benbenek-Klupa TMatejko BKlupa T. Metabolic control in type 1 diabetes patients practicing combat sports: at least two-year follow-up study. Springerplus. 2015;4:133. PubMed ID: 25825689 doi:10.1186/s40064-015-0919-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Borg GHassmén PLagerström M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol Occup Physiol. 1987;56:67985. PubMed ID: 3678222 doi:10.1007/BF00424810

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bridge CASantos JFChaabène HPieter WFranchini E. Physical and physiological profiles of taekwondo athletes. Sports Med. 2014;44:71333. PubMed ID: 24549477 doi:10.1007/s40279-014-0159-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Carter JBBanister EWBlaber AP. Effect of endurance exercise on autonomic control of heart rate. Sports Med. 2003;33:3346. PubMed ID: 12477376 doi:10.2165/00007256-200333010-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cayres SUVanderlei LCRodrigues AMet al. Sports practice is related to parasympathetic activity in adolescents. Rev Paul Pediatr. 2015;33:17480. PubMed ID: 25887927 doi:10.1016/j.rpped.2014.09.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Chai XWang BZhang ZWang W. Study on the optimum order of autoregressive models for heart rate variability analysis. J Biomed Eng. 2015;32(5):95864.

    • Search Google Scholar
    • Export Citation
  • 11.

    Chowdhary STownend JN. Role of nitric oxide in the regulation of cardiovascular autonomic control. Clin Sci. 1999;97(1):517. doi:10.1042/cs0970005

  • 12.

    Da Silva VPOliveira NASilveira HMello RGDeslandes AC. Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review. Ann Noninvasive Electrocardiol. 2015;20(2):10818. PubMed ID: 25424360 doi:10.1111/anec.12237

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Dong JG. The role of heart rate variability in sports physiology. Exp Ther Med. 2016;11(5):15316. PubMed ID: 27168768 doi:10.3892/etm.2016.3104

  • 14.

    Faulkner MSHathaway DTolley B. Cardiovascular autonomic function in healthy adolescents. Heart Lung. 2003;32:1022. PubMed ID: 12571544 doi:10.1067/mhl.2003.6

  • 15.

    Fernandes LOliveira JSoares-Miranda LRebelo ABrito J. Regular football practice improves autonomic cardiac function in male children. Asian J Sports Med. 2015;6:24037. PubMed ID: 26448848 doi:10.5812/asjsm.24037

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Giacon TRVanderlei FMChristofaro DGVanderlei LC. Impact of diabetes type 1 in children on autonomic modulation at rest and in response to the active orthostatic test. PLoS ONE. 2016;11(10):e0164375. PubMed ID: 27788152 doi:10.1371/journal.pone.0164375

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hedelin RWiklund UBjerle PHenriksson-Larsén K. Pre-and post-season heart rate variability in adolescent cross-country skiers. Scand J Med Sci Sports. 2000;10(5):298303. PubMed ID: 11001398 doi:10.1034/j.1600-0838.2000.010005298.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Hill LKHu DDKoenig Jet al. Ethnic differences in resting heart rate variability: a systematic review and meta-analysis. PsychosomMed. 2015;77:1625.

    • Search Google Scholar
    • Export Citation
  • 19.

    Jeemon PReddy KS. Social determinants of cardiovascular disease outcomes in Indian. Indian J Med Res. 2010;132:61722. PubMed ID: 21150014

  • 20.

    Julio UFPanissa VLGEsteves JVCury RLAgostinho MFFranchini E. Energy-system contributions to simulated judo matches. Int J Sports Physiol Perform. 2017;12(5):67683. PubMed ID: 27736247 doi:10.1123/ijspp.2015-0750

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Jung HCLee SKang HJet al. Taekwondo training improves CVD risk factors in obese male adolescents. Archi Budo. 2016;12:8592.

  • 22.

    Kiviniemi AMHautala AJKinnunen HTulppo MP. Endurance training guided individually by daily heart rate variability measurements. Eur J Appl Physiol. 2007;101(6):74351. PubMed ID: 17849143 doi:10.1007/s00421-007-0552-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Koopman JJvan Bodegom DMaan ACet al. Heart rate variability, but not heart rate, is associated with handgrip strength and mortality in older Africans at very low cardiovascular risk: a population-based study. Int J Cardiol. 2015;187:55961. PubMed ID: 25863303 doi:10.1016/j.ijcard.2015.03.383

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Leicht ASAllen GD. Moderate-term reproducibility of heart rate variability during rest and light to moderate exercise in children. Braz J Med Biol Res. 2008;41:62733. PubMed ID: 18719745 doi:10.1590/S0100-879X2008000700013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Lu WAKuo CD. Comparison of the effects of Tai Chi Chuan and Wai Tan Kung exercises on autonomic nervous system modulation and on hemodynamics in elder adults. Am J Chin Med. 2006;34:95968. PubMed ID: 17163585 doi:10.1142/S0192415X06004430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Lu WAKuo CD. Breathing frequency-independent effect of Tai Chi Chuan on autonomic modulation. Clin Auton Res. 2014;24:4752. PubMed ID: 24509942 doi:10.1007/s10286-014-0224-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Malina RMChoh ACCzerwinski SAChumlea WC. Validation of maturity offset in the fels longitudinal study. Pediatr Exerc Sci. 2016;28:43955. PubMed ID: 26757350 doi:10.1123/pes.2015-0090

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Mandigout SMelin AFauchier LN’Guyen LDCourteix DObert P. Physical training increases heart rate variability in healthy prepubertal children. Eur J Clin Invest. 2002;32:47987. PubMed ID: 12153547 doi:10.1046/j.1365-2362.2002.01017.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Millar PJLevy ASMcGowan CLMcCartney NMacDonald MJ. Isometric handgrip training lowers blood pressure and increases heart rate complexity in medicated hypertensive patients. Scand J Med Sci Sports. 2013;23:6206.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mirwald RLBaxter-Jones ADBailey DABeunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34:68994. PubMed ID: 11932580

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Nagai NHamada TKimura TMoritani T. Moderate physical exercise increases cardiac autonomic nervous system activity in children with low heart rate variability. Childs Nerv Syst. 2004;20:20914. PubMed ID: 15034730 doi:10.1007/s00381-004-0915-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Ogliari GMahinrad SStott DJet al. Resting heart rate, heart rate variability and functional decline in old age. CMAJ. 2015;187(15):E4429. doi:10.1503/cmaj.150462

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Radespiel-Tröger MRauh RMahlke CGottschalk TMück-Weymann M. Agreement of two different methods for measurement of heart rate variability. Clin Auton Res. 2003;13:99102. doi:10.1007/s10286-003-0085-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Radtke TKhattab KBrugger NEser PSaner HWilhelm M. High-volume sports club participation and autonomic nervous system activity in children. Eur J Clin Invest. 2013;43:8218. PubMed ID: 23713897 doi:10.1111/eci.12112

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Ramos JSDalleck LCTjonna AEBeetham KSCoombes JS. The impact of high-intensity interval training versus moderate-intensity continuous training on vascular function: a systematic review and meta-analysis. Sports Med. 2015;45:67992. PubMed ID: 25771785 doi:10.1007/s40279-015-0321-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Sato SMakita SUchida RIshihara SMasuda M. Effect of Tai Chi training on baroreflex sensitivity and heart rate variability in patients with coronary heart disease. Int Heart J. 2010;51:23841. doi:10.1536/ihj.51.238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Serra-Añó PMontesinos LLMorales Jet al. Heart rate variability in individuals with thoracic spinal cord injury. Spinal Cord. 2015;53(1):5963. doi:10.1038/sc.2014.207

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Silva CCPereira LMCardoso JRMoore JPNakamura FY. The Effect of physical training on heart rate variability in healthy children: a systematic review with meta-analysis. Pediatr Exerc Sci. 2014;26:14758. PubMed ID: 24722980 doi:10.1123/pes.2013-0063

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Sinoway LShenberger JLeaman Get al. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise. J Appl Physiol. 1996;81:177884. PubMed ID: 8904599 doi:10.1152/jappl.1996.81.4.1778

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Soares AHFarah BQCucato GGet al. Is the algorithm used to process heart rate variability data clinically relevant? Analysis in male adolescents. Einstein. 2016;14:196201. PubMed ID: 29790942 doi:10.1590/S1679-45082016AO3683

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Somers VKLeo KCShields RClary MMark AL. Forearm endurance training attenuates sympathetic nerve response to isometric handgrip in normal humans. J Appl Physiol. 1992;72:103943. PubMed ID: 1568957 doi:10.1152/jappl.1992.72.3.1039

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Sotiriou PKouidi ESamaras TDeligiannis A. Linear and non-linear analysis of heart rate variability in master athletes and healthy middle-aged non-athletes. Med Eng Phys. 2013;35(11):167681. PubMed ID: 23867807 doi:10.1016/j.medengphy.2013.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Sztajzel JJung MSievert K.De Luna AB. Cardiac autonomic profile in different sports disciplines during all-day activity. J Sports Med Phys Fitness. 2008;48:495501. PubMed ID: 18997654

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Taralov ZZTerziyski KVKostianev SS. Heart rate variability as a method for assessment of the autonomic nervous system and the adaptations to different physiological and pathological conditions. Folia Med. 2015;57:17380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 45.

    Taylor ACMcCartney NKamath MVWiley RL. Isometric training lowers resting blood pressure and modulates autonomic control. Med Sci Sports Exerc. 2003;35(2):2516. PubMed ID: 12569213 doi:10.1249/01.MSS.0000048725.15026.B5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Townend JNal-Ani MWest JNLittler WACoote JH. Modulation of cardiac autonomic control in humans by angiotensin II. Hypertension. 1995;25(6):12705. PubMed ID: 7768573 doi:10.1161/01.HYP.25.6.1270

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Tulppo MPMäkikallio THSeppänen TLaukkanen RTHuikuri HV. Vagal modulation of heart rate during exercise: effects of age and physical fitness. Am J Physiol. 1998;274(2 Pt 2):H4249.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Vanderlei LCPastre CMHoshi RACarvalho TDGodoy MF. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009;24:20517. PubMed ID: 19768301 doi:10.1590/S0102-76382009000200018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Vanderlei LCPastre CMJúnior IFde Godoy MF. Fractal correlation of heart rate variability in obese children. Auton Neurosci. 2010;155(1–2):1259. PubMed ID: 20211587 doi:10.1016/j.autneu.2010.02.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Van Mechelen WTwisk JWVan Lenthe FJPost GBSnel JKemper HC. Longitudinal relationships between resting heart rate and biological risk factors for cardiovascular disease: the Amsterdam growth and health study. J Sports Sci. 1998;16:1723. doi:10.1080/026404198366641

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Vasconcellos FSeabra ACunha Fet al. Health markers in obese adolescents improved by a 12-week recreational soccer program: a randomised controlled trial. J Sports Sci. 2016;34:56475. PubMed ID: 26208409 doi:10.1080/02640414.2015.1064150

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52.

    Vinet ABeck LNottin SObert P. Effect of intensive training on heart rate variability in prepubertal swimmers. Eur J Clin Invest. 2005;35(10):61014. PubMed ID: 16178879 doi:10.1111/j.1365-2362.2005.01557.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 90 91 14
Full Text Views 5 5 3
PDF Downloads 1 1 0
Altmetric Badge
PubMed
Google Scholar