Age-Predicted Maximal Heart Rate Equations Are Inaccurate for Use in Youth Male Soccer Players

in Pediatric Exercise Science

Click name to view affiliation

Zackary S. CiconeThe University of Alabama

Search for other papers by Zackary S. Cicone in
Current site
Google Scholar
PubMed
Close
*
,
Oleg A. SinelnikovThe University of Alabama

Search for other papers by Oleg A. Sinelnikov in
Current site
Google Scholar
PubMed
Close
*
, and
Michael R. EscoThe University of Alabama

Search for other papers by Michael R. Esco in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: The purpose of this study was to compare the differences between measured (MHRobt) and predicted (MHRpred) maximal heart rate (MHR) in youth athletes. Methods: In total, 30 male soccer players [14.6 (0.6) y] volunteered to participate in this study. MHRobt was determined via maximal-effort graded exercise test. Age-predicted MHR (MHRpred) was calculated for each participant using equations by Fox, Tanaka, Shargal, and Nikolaidis. Mean differences were compared using Friedman’s 2-way analysis of variance and post hoc pairwise comparisons. Agreement between MHRobt and MHRpred values was calculated using the Bland–Altman method. Results: There were no significant differences between MHRobt and MHRpred from the Fox (P = .777) and Nikolaidis (P = .037) equations. The Tanaka and Shargal equations significantly underestimated MHRobt (P < .001). All 4 equations produced 95% limits of agreement of ±15.0 beats per minute around the constant error. Conclusions: The results show that the Fox and Nikolaidis equations produced the smallest mean difference in predicting MHRobt. However, the wide limits of agreement suggests that none of the equations adequately account for individual variability in MHRobt. Practitioners should avoid applying these equations in youth athletes and utilize a lab or field testing protocol to obtain MHR.

Cicone, Sinelnikov, and Esco are with the Dept. of Kinesiology, The University of Alabama, Tuscaloosa, AL.

Address author correspondence to Zackary S. Cicone at zcicone@crimson.ua.edu.
  • Collapse
  • Expand
  • 1.

    Armstrong N, Welsman JR. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc Sport Sci Rev. 1994;22(1):43576. doi:10.1249/00003677-199401000-00016

    • Search Google Scholar
    • Export Citation
  • 2.

    Åstrand PO. Experimental studies of physical working capacity in relation to sex and age [dissertation]. Copenhagen, Denmark: E. Munksgaard; 1952.

    • Search Google Scholar
    • Export Citation
  • 3.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):30710. doi:10.1016/S0140-6736(86)90837-8

    • Search Google Scholar
    • Export Citation
  • 4.

    Borg G. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med. 1970;2(2):928. PubMed

  • 5.

    Castro-Piñero J, Artero EG, España-Romero V, Ortega FB, Sjöström M, Suni J, Ruiz JR. Criterion-related validity of field-based fitness tests in youth: a systematic review. Br J Sport Med. 2009;44(13):93443. doi:10.1136/bjsm.2009.058321

    • Search Google Scholar
    • Export Citation
  • 6.

    Colantonio E, Kiss M. Is the HRmax = 220-age equation valid to prescribe exercise training in children? J Exerc Physiol Online. 2013;16(1):1927.

    • Search Google Scholar
    • Export Citation
  • 7.

    Engels HJ, Zhu W, Moffatt RJ. An empirical evaluation of the prediction of maximal heart rate. Res Q Exerc Sport. 1998;69(1):948. doi:10.1080/02701367.1998.10607673

    • Search Google Scholar
    • Export Citation
  • 8.

    Esco MR, Chamberlain N, Flatt AA, Snarr RL, Bishop PA, Williford HN. Cross-validation of age-predicted maximal heart rate equations among female collegiate athletes. J Strength Cond Res. 2015;29(11):30539. PubMed doi:10.1519/JSC.0000000000000978

    • Search Google Scholar
    • Export Citation
  • 9.

    Fleg JL. Alterations in cardiovascular structure and function with advancing age. Am J Cardiol. 1986;57(5):3344. doi:10.1016/0002-9149(86)91025-8

    • Search Google Scholar
    • Export Citation
  • 10.

    Fox SM, Naughton JP, Haskell WL. Physical activity and the prevention of coronary heart disease. Ann Clin Res. 1971;3(6):40432. PubMed

    • Search Google Scholar
    • Export Citation
  • 11.

    Gellish RL, Goslin BR, Olson RE, McDonald A, Russi GD, Moudgil VK. Longitudinal modeling of the relationship between age and maximal heart rate. Med Sci Sports Exerc. 2007;39(5):8229. doi:10.1097/mss.0b013e31803349c6

    • Search Google Scholar
    • Export Citation
  • 12.

    Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293(1):H583. doi:10.1152/ajpheart.00195.2007

    • Search Google Scholar
    • Export Citation
  • 13.

    Kostis JB, Moreyra AE, Amendo MT, Di Pietro J, Cosgrove N, Kuo PT. The effect of age on heart rate in subjects free of heart disease. Studies by ambulatory electrocardiography and maximal exercise stress test. Circulation. 1982;65(1):1415. PubMed doi:10.1161/01.CIR.65.1.141

    • Search Google Scholar
    • Export Citation
  • 14.

    Lehmann M, Keul J, Korsten-Reck U. The influence of graduated treadmill exercise on plasma catecholamines, aerobic and anaerobic capacity in boys and adults. Eur J Appl Physiol Occup Physiol. 1980;47(3):30111. doi:10.1007/BF00422476

    • Search Google Scholar
    • Export Citation
  • 15.

    Londeree BR, Moeschberger ML. Effect of age and other factors on maximal heart rate. Res Q Exerc Sport. 1982;53(4):297304. doi:10.1080/02701367.1982.10605252

    • Search Google Scholar
    • Export Citation
  • 16.

    Machado FA, Denadai BS. Validity of maximum heart rate prediction equations for children and adolescents. Arq Bras Cardiol. 2011;97(2):13640. PubMed doi:10.1590/S0066-782X2011005000078

    • Search Google Scholar
    • Export Citation
  • 17.

    Mahon AD, Lee JD, Hanna LE. Evaluating the prediction of maximal heart rate in children and adolescents. Res Q Exerc Sport. 2010;81(4):46671. doi:10.1080/02701367.2010.10599707

    • Search Google Scholar
    • Export Citation
  • 18.

    Nes B, Janszky I, Wisløff U, Støylen A, Karlsen T. Age-predicted maximal heart rate in healthy subjects: the HUNT fitness study. Scand J Med Sci Sports. 2013;23(6):697704. doi:10.1111/j.1600-0838.2012.01445.x

    • Search Google Scholar
    • Export Citation
  • 19.

    Nikolaidis PT. Age-predicted vs measured maximal heart rate in young team sport athletes. Niger Med J. 2014;55(4):31420. PubMed doi:10.4103/0300-1652.137192

    • Search Google Scholar
    • Export Citation
  • 20.

    Nikolaidis PT. Maximal heart rate in soccer players: measured versus age-predicted. Biomed J. 2015;38(1):849. PubMed doi:10.4103/2319-4170.131397

    • Search Google Scholar
    • Export Citation
  • 21.

    Nikolaidis PT, Padulo J, Chtourou H, Torres-Luque G, Afonso J, Heller J. Estimating maximal heart rate with the ‘220-age’ formula in adolescent female volleyball players: a preliminary study. Hum Mov. 2014;15(3):16670.

    • Search Google Scholar
    • Export Citation
  • 22.

    Robergs RA, Landwehr R. The surprising history of the “HRmax = 220-age” equation. J Exerc Physiol Online. 2002;5(2):110.

  • 23.

    Robinson S. Experimental studies of physical fitness in relation to age. Eur J Appl Physiol Occup Physiol. 1938;10(3):251323. doi:10.1007/BF02011412

    • Search Google Scholar
    • Export Citation
  • 24.

    Rosenthal R. Parametric measures of effect size. In: Cooper HM, Hedges LV, editors. The Handbook of Research Synthesis. New York: Russell Sage Foundation; 1994, pp. 23144.

    • Search Google Scholar
    • Export Citation
  • 25.

    Rowland T, Maresh C, Charkoudian N, Vanderburgh P, Castellani J, Armstrong L. Plasma norepinephrine responses to cycle exercise in boys and men. Int J Sports Med. 1996;17(1):226. doi:10.1055/s-2007-972803

    • Search Google Scholar
    • Export Citation
  • 26.

    Shargal E, Kislev-Cohen R, Zigel L, Epstein S, Pilz-Burstein R, Tenenbaum G. Age-related maximal heart rate: examination and refinement of prediction equations. J Sports Med Phys Fitness. 2015;55(10):120718. PubMed

    • Search Google Scholar
    • Export Citation
  • 27.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):1536. PubMed doi:10.1016/S0735-1097(00)01054-8

    • Search Google Scholar
    • Export Citation
  • 28.

    Tate CA, Hyek MF, Taffet GE. Mechanisms for the responses of cardiac muscle to physical activity in old age. Med Sci Sports Exerc. 1994;26(5):5617. doi:10.1249/00005768-199405000-00007

    • Search Google Scholar
    • Export Citation
  • 29.

    Verschuren O, Maltais DB, Takken TIM. The 220-age equation does not predict maximum heart rate in children and adolescents. Dev Med Child Neurol. 2011;53(9):8614. PubMed doi:10.1111/j.1469-8749.2011.03989.x

    • Search Google Scholar
    • Export Citation
  • 30.

    Washington R, Bricker J, Alpert B, et al. Guidelines for exercise testing in the pediatric age group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4):216679. PubMed doi:10.1161/01.CIR.90.4.2166

    • Search Google Scholar
    • Export Citation
  • 31.

    Williford HN, Scharff-olson M, Duey WJ, Pugh S, Barksdale JM. Physiological status and prediction of cardiovascular fitness in highly trained youth soccer athletes. J Strength Cond Res. 1999;13(1):105.

    • Search Google Scholar
    • Export Citation
  • 32.

    Zavorsky GS. Evidence and possible mechanisms of altered maximum heart rate with endurance training and tapering. Sports Med. 2000;29(1):1326. PubMed doi:10.2165/00007256-200029010-00002

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1954 885 62
Full Text Views 22 1 0
PDF Downloads 20 6 0