Does Wearing a Portable Metabolic Unit Affect Youth’s Physical Activity or Enjoyment During Physically Active Games or Video Games?

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Portable metabolic units (PMUs) are used to assess energy expenditure, with the assumption that physical activity level and enjoyment are unaffected due to the light weight and small size. Purpose: To assess differences in physical activity level and enjoyment while wearing and not wearing a PMU. Method: Youth (8–17 y; N = 73) played children’s games or active video games while wearing and not wearing a PMU (crossover design). Participants wore an accelerometer and heart rate monitor and responded to questions about enjoyment on a facial affective scale. A repeated-measures analysis of variance was used to determine if accelerometer measures, heart rate, or enjoyment differed between conditions overall and by sex and weight status. Results: Steps per minute were lower while wearing the PMU than not wearing the PMU (40 vs 44, P = .03). There was an interaction between PMU condition and weight status for enjoyment (P = .01), with overweight participants reporting less enjoyment when wearing the PMU compared with not wearing the PMU (72 vs 75 out of 100). Heart rate, vector magnitude, and counts per minute were not different. Conclusion: There may be psychosocial effects of wearing the PMU, specifically in overweight participants. Activity level was minimally affected, but the practical significance for research is still unknown.

Clevenger and Pfeiffer are with Michigan State University, East Lansing, MI. Howe is with Ohio University, Athens, OH.

Clevenger (Cleven18@msu.edu) is corresponding author.
  • 1.

    Ainslie PN, Reilly T, Westerterp KR. Estimating human energy expenditure: a review of techniques with particular reference to doubly labelled water. Sports Med. 2003;33(9):68398. PubMed ID: 12846591 doi:10.2165/00007256-200333090-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Åstrand PO, Saltin B. Oxygen uptake during the first minutes of heavy muscular exercise. J Appl Physiol. 1961;16(6):9716. PubMed ID: 13863013 doi:10.1152/jappl.1961.16.6.971

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Bauer DH, Freivalds A. Backpack load limit recommendation for middle school students based on physiological and psychophysical measurements. Work. 2009;32(3):33950. PubMed ID: 19369726 doi:10.3233/WOR-2009-0832

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Belding H, Darling R, Griffin D, Robinson S, Turrell E. Evaluation of thermal insulation provided by clothing. In: L.H Newburgh, M. Harris (Eds.), Clothing Test Methods. Washington, DC: National Academies Press; 1945:920.

    • Search Google Scholar
    • Export Citation
  • 5.

    Borghols E, Dresen M, Hollander A. Influence of heavy weight carrying on the cardiorespiratory system during exercise. Eur J Appl Physiol Occup Physiol. 1978;38(3):1619. PubMed ID: 648506 doi:10.1007/BF00430074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Chen KY, Basset DR Jr. The technology of accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37(11 Suppl):490500. PubMed ID: 16294112 doi:10.1249/01.mss.0000185571.49104.82

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Chow DH, Kwok ML, Au-Yang AC, et al. The effect of backpack load on the gait of normal adolescent girls. Ergonomics. 2005;48(6):64256. PubMed ID: 16087499 doi:10.1080/00140130500070921

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Clevenger KA, Howe CA. Energy cost and enjoyment of active videogames in children and teens: Xbox 360 Kinect. Games Health J. 2015;4(4):31824. PubMed ID: 26182220 doi:10.1089/g4h.2014.0101

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. Rev. ed. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.; 1977.

  • 10.

    Connolly BH, Cook B, Hunter S, et al. Effects of backpack carriage on gait parameters in children. Pediatr Phys Ther. 2008;20(4):34755. PubMed ID: 19011525 doi:10.1097/PEP.0b013e31818a0f8f

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Daneshmandi H, Rahmani-Nia F, Hosseini S. Effect of carrying school backpacks on cardio-respiratory changes in adolescent students. Sport Sci Health. 2008;4(1–2):714. doi:10.1007/s11332-008-0060-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Eriksson JS, Rosdahl H, Schantz P. Validity of the Oxycon Mobile metabolic system under field measuring conditions. Eur J Appl Physiol. 2012;112(1):34555. doi:10.1007/s00421-011-1985-1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Herrmann SD, Pfeiffer KA. New data for an updated youth energy expenditure compendium: an introduction. J Phys Act Health. 2016;13(6 Suppl 1):S12. doi:10.1123/jpah.2016-0405

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Holewijn M. Physiological strain due to load carrying. Eur J Appl Physiol Occup Physiol. 1990;61(3–4):23745. PubMed ID: 2282907 doi:10.1007/BF00357606

  • 15.

    Holt KG, Wagenaar RC, LaFiandra ME, Kubo M, Obusek JP. Increased musculoskeletal stiffness during load carriage at increasing walking speeds maintains constant vertical excursion of the body center of mass. J Biomech. 2003;36(4):46571. PubMed ID: 12600336 doi:10.1016/S0021-9290(02)00457-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Howe CA, Freedson PS, Feldman HA, Osganian SK. Energy expenditure and enjoyment of common children’s games in a simulated free-play environment. J Pediatr. 2010;157(6):93642.e2. PubMed ID: 20708746 doi:10.1016/j.jpeds.2010.06.041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Huynh HT, Roberts CK, Taylor M, Sowash J, Souren T, Liang MT. Comparison of the Jaeger Oxycon Mobile unit with two standard laboratory metabolic carts. Med Sci Sports Exerc. 2006;38(5):S500.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kuczmarski RJ, Ogden CL, Guo SS, et al. 2000 CDC Growth Charts for the United States: methods and development. Vital Health Stat. 2002;11(246):1190. PubMed ID: 12043359

    • Search Google Scholar
    • Export Citation
  • 19.

    Macfarlane DJ. Automated metabolic gas analysis systems. Sports Med. 2001;31(12):84161. PubMed ID: 11665912 doi:10.2165/00007256-200131120-00002

  • 20.

    Mackie H, Legg S. Postural and subjective responses to realistic schoolbag carriage. Ergonomics. 2008;51(2):21731. PubMed ID: 17906994 doi:10.1080/00140130701565588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Morris SB, DeShon RP. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychol Methods. 2002;7(1):10525. PubMed ID: 11928886 doi:10.1037/1082-989X.7.1.105

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Muza S, Latzka W, Epstein Y, Pandolf K. Load carriage induced alterations of pulmonary function. Int J Ind Ergon. 1989;3(3):2217. doi:10.1016/0169-8141(89)90021-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Pau M, Corona F, Leban B, Pau M. Effects of backpack carriage on foot–ground relationship in children during upright stance. Gait Posture. 2011;33(2):1959. PubMed ID: 21112213 doi:10.1016/j.gaitpost.2010.10.096

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Pau M, Mandaresu S, Leban B, Nussbaum MA. Short-term effects of backpack carriage on plantar pressure and gait in schoolchildren. J Electromyogr Kinesiol. 2015;25(2):40612. PubMed ID: 25499084 doi:10.1016/j.jelekin.2014.11.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Pau M, Saba E, Pau M. A study on the combined effect of obesity and load carriage on plantar pressure patterns of primary school children. Paper presented at: Proceedings of the Human Factors and Ergonomics Society Annual Meeting; 2011. Las Vegas, NV.

    • Export Citation
  • 26.

    Proffitt DR. Embodied perception and the economy of action. Perspect Psychol Sci. 2006;1(2):11022. PubMed ID: 26151466 doi:10.1111/j.1745-6916.2006.00008.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Quesada PM, Mengelkoch LJ, Hale RC, Simon SR. Biomechanical and metabolic effects of varying backpack loading on simulated marching. Ergonomics. 2000;43(3):293309. PubMed ID: 10755654 doi:10.1080/001401300184413

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Rai A, Agarawal S, Bharti S. Postural effect of back packs on school children: its consequences on their body posture. Int J Health Sci Res. 2013;3(10):10916.

    • Search Google Scholar
    • Export Citation
  • 29.

    Ridley K, Ainsworth BE, Olds TS. Development of a compendium of energy expenditures for youth. Int J Behav Nutr Phys Act. 2008;5:45. PubMed ID: 18782458 doi:10.1186/1479-5868-5-45

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Ridley K, Olds T. Assigning energy costs to activities in children: a review and synthesis. Med Sci Sports Exerc. 2008;40(8):143946. PubMed ID: 18614948 doi:10.1249/MSS.0b013e31817279ef

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Rosdahl H, Gullstrand L, Salier-Eriksson J, Johansson P, Schantz P. Evaluation of the Oxycon Mobile metabolic system against the Douglas bag method. Eur J Appl Physiol. 2010;109(2):15971. PubMed ID: 20043228 doi:10.1007/s00421-009-1326-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Schertzer E, Riemer R. Metabolic rate of carrying added mass: a function of walking speed, carried mass and mass location. Appl Ergon. 2014;45(6):142232. PubMed ID: 24793822 doi:10.1016/j.apergo.2014.04.009

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Singh T, Koh M. Effects of backpack load position on spatiotemporal parameters and trunk forward lean. Gait Posture. 2009;29(1):4953. PubMed ID: 18667319 doi:10.1016/j.gaitpost.2008.06.006

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Taylor C. Some properties of maximal and submaximal exercise with reference to physiological variation and the measurement of exercise tolerance. Am J Physiol Legacy Content. 1944;142(2):20012. doi:10.1152/ajplegacy.1944.142.2.200

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Technical Specifications of the Oxycon Mobile. Carefusion; 2009. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwjnq-vpmpPdAhUJ6IMKHRYaCmUQFjAAegQIARAC&url=https%3A%2F%2Fwww.vyaire.com%2FDocuments%2Finternational%2Fspecifications%2Frespiratory-care%2FRC_Oxycon-Mobile-Device_SP_EN.pdf&usg=AOvVaw14q-_sFQiHifZ0Q4rNkFRw. Accessed August 29, 2018.

    • Search Google Scholar
    • Export Citation
  • 36.

    Zabinski MF, Saelens BE, Stein RI, Hayden-Wade HA, Wilfley DE. Overweight children’s barriers to and support for physical activity. Obes Res. 2003;11(2):23846. PubMed ID: 12582220 doi:10.1038/oby.2003.37

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 115 115 20
Full Text Views 6 6 0
PDF Downloads 8 8 0