Reliability of Submaximal Yo-Yo Tests in 9- to 16-Year-Old Untrained Schoolchildren

in Pediatric Exercise Science

Click name to view affiliation

Susana Cristina Araújo PóvoasUniversity Institute of Maia

Search for other papers by Susana Cristina Araújo Póvoas in
Current site
Google Scholar
PubMed
Close
*
,
Peter KrustrupUniversity of Southern Denmark
University of Exeter

Search for other papers by Peter Krustrup in
Current site
Google Scholar
PubMed
Close
*
,
Carlo CastagnaUniversity of Rome Tor Vergata
Italian Football Federation

Search for other papers by Carlo Castagna in
Current site
Google Scholar
PubMed
Close
*
,
Pedro Miguel Ribeiro da SilvaUniversity of Porto

Search for other papers by Pedro Miguel Ribeiro da Silva in
Current site
Google Scholar
PubMed
Close
*
,
Manuel J. Coelho-e-SilvaUniversity of Coimbra

Search for other papers by Manuel J. Coelho-e-Silva in
Current site
Google Scholar
PubMed
Close
*
,
Rita Liliana Mendes PereiraUniversity of Porto

Search for other papers by Rita Liliana Mendes Pereira in
Current site
Google Scholar
PubMed
Close
*
, and
Malte Nejst LarsenUniversity of Southern Denmark

Search for other papers by Malte Nejst Larsen in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: To examine the reliability of age-adapted submaximal Yo-Yo (Yo-Yosubmax) intermittent tests in untrained schoolchildren aged 9–16 years (n = 139; 72 boys and 67 girls) and within children with high and low percentage of body fat (%BF). Methods: Yo-Yo intermittent recovery level 1 children’s (YYIR1C), Yo-Yo intermittent endurance level 1 (YYIE1), and Yo-Yo intermittent endurance level 2 (YYIE2) tests were performed 7 days apart by 9- to 11-, 12- to 13-, and 14- to 16-year-old children, respectively. Reliability was tested for Yo-Yosubmax heart rate (HRsubmax), peak HR, and maximal distance. Results: HRsubmax typical errors of measurement (TEM) in YYIR1C, YYIE1, and YYIE2 were 2.2% (1.7%–2.9%), 2.4% (1.9%–3.3%), 1.9% (1.6%–2.5%) and 2.4% (1.9%–3.3%), 2.4% (1.9%–3.2%), 1.9% (1.5%–2.4%) for girls and boys, respectively. HRsubmax intraclass correlation coefficient values were good to excellent (.62–.87) in all age groups and in schoolchildren of different %BF. TEM for HRsubmax ranged from 2.1% to 2.3% in high and low %BF groups. Maximal distance intraclass correlation coefficients were excellent and TEM values ranged from 11% to 12% in both %BF groups. HRsubmax was moderately to largely associated (r = −.46 to −.64; P < .002) with Yo-Yo maximal distance across the age groups. Conclusion: Yo-Yosubmax tests are a reliable tool providing useful and sustainable aerobic performance testing in physical education, irrespective of individual %BF.

Póvoas is with the Research Center in Sports Sciences, Health Sciences and Human Development, CIDESD, University Institute of Maia, ISMAI, Maia, Portugal. Krustrup and Larsen are with the Department of Sports Science and Clinical Biomechanics, SDU Sport and Health Sciences Cluster (SHSC), University of Southern Denmark, Odense, Denmark. Krustrup is also with Sport and Health Sciences, University of Exeter, Exeter, United Kingdom. Castagna is with the School of Sport and Exercise Sciences, University of Rome Tor Vergata, Rome, Italy; and Fitness Training and Biomechanics Laboratory, Italian Football Federation, Technical Department, Coverciano (Florence), Italy. da Silva and Pereira are with the Research Centre in Physical Activity, Health and Leisure, Faculty of Sport, University of Porto, Porto, Portugal. Coelho-e-Silva is with the Faculty of Sports Science and Physical Education, University of Coimbra, Coimbra, Portugal.

Póvoas (spovoas@ismai.pt) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Ahler T, Bendiksen M, Krustrup P, Wedderkopp N. Aerobic fitness testing in 6- to 9-year-old children: reliability and validity of a modified Yo-Yo IR1 test and the Andersen test. Eur J Appl Physiol. 2012;112(3):8716. PubMed ID: 21687996 doi:10.1007/s00421-011-2039-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Andersen LB, Sardinha LB, Froberg K, Riddoch CJ, Page AS, Anderssen SA. Fitness, fatness and clustering of cardiovascular risk factors in children from Denmark, Estonia and Portugal: the European Youth Heart Study. Int J Pediatr Obes. 2008;3 Suppl 1:5866. doi:10.1080/17477160801896366

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):21738. PubMed ID: 9820922 doi:10.2165/00007256-199826040-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Bangsbo J. Fitness training in football: a scientific approach. Bagsvaerd, Denmark: HO & Storm; 1994.

  • 5.

    Bangsbo J, Hansen PR, Dvorak J, Krustrup P. Recreational football for disease prevention and treatment in untrained men: a narrative review examining cardiovascular health, lipid profile, body composition, muscle strength and functional capacity. Br J Sports Med. 2015;49(9):56876. PubMed ID: 25878072 doi:10.1136/bjsports-2015-094781

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bangsbo J, Iaia FM, Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports. Sports Med. 2008;38(1):3751. PubMed ID: 18081366 doi:10.2165/00007256-200838010-00004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Baquet G, Berthoin S, Gerbeaux M, Van Praagh E. High-intensity aerobic training during a 10 week one-hour physical education cycle: effects on physical fitness of adolescents aged 11 to 16. Int J Sports Med. 2001;22(4):295300. PubMed ID: 11414674 doi:10.1055/s-2001-14343

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bendiksen M, Ahler T, Clausen H, Wedderkopp N, Krustrup P. The use of Yo-Yo intermittent recovery level 1 and Andersen testing for fitness and maximal heart rate assessments of 6- to 10-year-old school children. J Strength Cond Res. 2013;27(6):158390. PubMed ID: 22964860 doi:10.1519/JSC.0b013e318270fd0b

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bendiksen M, Williams CA, Hornstrup T, et al. Heart rate response and fitness effects of various types of physical education for 8- to 9-year-old schoolchildren. Eur J Sport Sci. 2014;14(8):8619. PubMed ID: 24533471 doi:10.1080/17461391.2014.884168

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):30710. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Bradley PS, Mohr M, Bendiksen M, et al. Sub-maximal and maximal Yo-Yo intermittent endurance test level 2: heart rate response, reproducibility and application to elite soccer. Eur J Appl Physiol. 2011;111(6):96978. PubMed ID: 21082197 doi:10.1007/s00421-010-1721-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Brothers J, McBride M, Paridon A, Zhang X, Paridon S. Fatness is not a factor of fitness: analysis of cardiorespiratory data from healthy children over an 8-year period. Cardiol Young. 2013;23(1):4753. PubMed ID: 22400917 doi:10.1017/S1047951112000297

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Brouwer SI, Stolk RP, Liem ET, Lemmink KA, Corpeleijn E. The role of fitness in the association between fatness and cardiometabolic risk from childhood to adolescence. Pediatr Diabetes. 2013;14(1):5765. PubMed ID: 22830519 doi:10.1111/j.1399-5448.2012.00893.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Castagna C, Impellizzeri F, Cecchini E, Rampinini E, Alvarez JC. Effects of intermittent-endurance fitness on match performance in young male soccer players. J Strength Cond Res. 2009;23(7):19549. PubMed ID: 19855318 doi:10.1519/JSC.0b013e3181b7f743

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Castagna C, Impellizzeri FM, Belardinelli R, et al. Cardiorespiratory responses to Yo-Yo intermittent endurance test in nonelite youth soccer players. J Strength Cond Res. 2006;20(2):32630. PubMed ID: 16689622

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Castagna C, Impellizzeri FM, Manzi V, Ditroilo M. The assessment of maximal aerobic power with the multistage fitness test in young women soccer players. J Strength Cond Res. 2010;24(6):148894. PubMed ID: 20508449 doi:10.1519/JSC.0b013e3181d8e97a

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Castagna C, Impellizzeri FM, Rampinini E, D’Ottavio S, Manzi V. The Yo-Yo intermittent recovery test in basketball players. J Sci Med Sport. 2008;11(2):2028. PubMed ID: 17574917 doi:10.1016/j.jsams.2007.02.013

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Castagna C, Manzi V, Impellizzeri F, Weston M, Barbero Alvarez JC. Relationship between endurance field tests and match performance in young soccer players. J Strength Cond Res. 2010;24(12):322733. PubMed ID: 21068683 doi:10.1519/JSC.0b013e3181e72709

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 20.

    Coppieters M, Stappaerts K, Janssens K, Jull G. Reliability of detecting ‘onset of pain’ and ‘submaximal pain’ during neural provocation testing of the upper quadrant. Physiother Res Int. 2002;7(3):14656. PubMed ID: 12426912 doi:10.1002/pri.251

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR. High-intensity interval training for improving health-related fitness in adolescents: a systematic review and meta-analysis. Br J Sports Med. 2015;49(19):125361. PubMed ID: 26089322 doi:10.1136/bjsports-2014-094490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Costigan SA, Eather N, Plotnikoff RC, et al. Preliminary efficacy and feasibility of embedding high intensity interval training into the school day: a pilot randomized controlled trial. Prev Med Rep. 2015;2:9739. PubMed ID: 26844177 doi:10.1016/j.pmedr.2015.11.001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Cummings DM, Dubose KD, Imai S, Collier DN. Fitness versus fatness and insulin resistance in U.S. adolescents. J Obes. 2010;2010:195729. doi:10.1155/2010/195729

  • 24.

    Deprez D, Coutts AJ, Lenoir M, et al. Reliability and validity of the Yo-Yo intermittent recovery test level 1 in young soccer players. J Sports Sci. 2014;32(10):90310. PubMed ID: 24479712 doi:10.1080/02640414.2013.876088

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Fernandes L, Krustrup P, Silva G, Rebelo A, Oliveira J, Brito J. Yo-Yo Intermittent Endurance Test-Level 1 to monitor changes in aerobic fitness in pre-pubertal boys. Eur J Sport Sci. 2015;16(2):15964. PubMed ID: 25611184 doi:10.1080/17461391.2014.998296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Fleiss JL. Reliability of measurements: the design and analysis of clinical experiments. New York, NY: Wiley; 1986.

  • 27.

    Helgerud J, Hoydal K, Wang E, et al. Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc. 2007;39(4):66571. PubMed ID: 17414804 doi:10.1249/mss.0b013e3180304570

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Herget S, Reichardt S, Grimm A, et al. High-intensity interval training for overweight adolescents: program acceptance of a media supported intervention and changes in body composition. Int J Environ Res Public Health. 2016;13(11):1099. doi:10.3390/ijerph13111099

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Hopkins WG. How to interpret changes in an athletic performance test. Sportscience. 2004;8:17.

  • 30.

    Hopkins WG. Linear models and effect magnitudes for research, clinical and practical applications. Sportscience. 2010;14:4958.

  • 31.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41(1):313. PubMed ID: 19092709 doi:10.1249/MSS.0b013e31818cb278

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Hurtig-Wennlof A, Ruiz JR, Harro M, Sjostrom M. Cardiorespiratory fitness relates more strongly than physical activity to cardiovascular disease risk factors in healthy children and adolescents: the European youth heart study. Eur J Cardiovasc Prev Rehabil. 2007;14(4):57581. PubMed ID: 17667650 doi:10.1097/HJR.0b013e32808c67e3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Impellizzeri FM, Marcora SM. Test validation in sport physiology: lessons learned from clinimetrics. Int J Sports Physiol Perform. 2009;4(2):26977. PubMed ID: 19567929 doi:10.1123/ijspp.4.2.269

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Jago R, Drews KL, McMurray RG, et al. Fatness, fitness, and cardiometabolic risk factors among sixth-grade youth. Med Sci Sports Exerc. 2010;42(8):150210. PubMed ID: 20139783 doi:10.1249/MSS.0b013e3181d322c4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Klakk H, Grontved A, Moller NC, Heidemann M, Andersen LB, Wedderkopp N. Prospective association of adiposity and cardiorespiratory fitness with cardiovascular risk factors in healthy children. Scand J Med Sci Sports. 2014;24(4):e27582. PubMed ID: 24397591 doi:10.1111/sms.12163

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Kohl HW 3rd, Craig CL, Lambert EV, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380(9838):294305. PubMed ID: 22818941 doi:10.1016/S0140-6736(12)60898-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Krustrup P, Mohr M, Amstrup T, et al. The Yo-Yo intermittent recovery test: physiological response, reliability, and validity. Med Sci Sports Exerc. 2003;35(4):697705. PubMed ID: 12673156 doi:10.1249/01.MSS.0000058441.94520.32

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Krustrup P, Mohr M, Nybo L, Jensen JM, Nielsen JJ, Bangsbo J. The Yo-Yo IR2 test: physiological response, reliability, and application to elite soccer. Med Sci Sports Exerc. 2006;38(9):166673. PubMed ID: 16960529 doi:10.1249/01.mss.0000227538.20799.08

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Logan GR, Harris N, Duncan S, Schofield G. A review of adolescent high-intensity interval training. Sports Med. 2014;44(8):107185. PubMed ID: 24743929 doi:10.1007/s40279-014-0187-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Meredith-Jones KA, Williams SM, Taylor RW. Bioelectrical impedance as a measure of change in body composition in young children. Pediatr Obes. 2015;10(4):2529. PubMed ID: 25291012 doi:10.1111/ijpo.263

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Nevill AM, Atkinson G. Assessing agreement between measurements recorded on a ratio scale in sports medicine and sports science. Br J Sports Med. 1997;31(4):3148. PubMed ID: 9429009 doi:10.1136/bjsm.31.4.314

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Nielsen G, Bugge A, Andersen LB. The influence of club football on children’s daily physical activity. Soccer Soc. 2015;17(2):113.

  • 44.

    Noonan V, Dean E. Submaximal exercise testing: clinical application and interpretation. Phys Ther. 2000;80(8):782807. PubMed ID: 10911416

  • 45.

    Olds T, Tomkinson G, Leger L, Cazorla G. Worldwide variation in the performance of children and adolescents: an analysis of 109 studies of the 20-m shuttle run test in 37 countries. J Sports Sci. 2006;24(10):102538. PubMed ID: 17115514 doi:10.1080/02640410500432193

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Ortega FB, Ruiz JR, Castillo MJ, et al. Health-related physical fitness according to chronological and biological age in adolescents. The AVENA study. J Sports Med Phys Fitness. 2008;48(3):3719. PubMed ID: 18974725

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32(1):111. doi:10.1038/sj.ijo.0803774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Parrett AL, Valentine RJ, Arngrimsson SA, Castelli DM, Evans EM. Adiposity and aerobic fitness are associated with metabolic disease risk in children. Appl Physiol Nutr Metab. 2011;36(1):729. PubMed ID: 21326380 doi:10.1139/H10-083

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Póvoas SC, Castagna C, da Costa Soares JM, et al. Reliability and construct validity of Yo-Yo tests in untrained and soccer-trained schoolgirls aged. Pediatr Exerc Sci. 2016;28(2):32130. PubMed ID: 26694833 doi:10.1123/pes.2015-0212

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Póvoas SC, Castagna C, Soares JM, Silva PM, Lopes MV, Krustrup P. Reliability and validity of Yo-Yo tests in 9- to 16-year-old football players and matched non-sports active schoolboys. Eur J Sport Sci. 2016;16(7):75563. PubMed ID: 26714564 doi:10.1080/17461391.2015.1119197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Pyne DB. Interpreting the results of fitness testing. Gastrolyte VIS International Science and Football Symposium; March 23, 2003. Melbourne, Australia: Victorian Institute of Sport; 2003.

    • Search Google Scholar
    • Export Citation
  • 52.

    Rowlands AV, Eston RG, Ingledew DK. Measurement of physical activity in children with particular reference to the use of heart rate and pedometry. Sports Med. 1997;24(4):25872. PubMed ID: 9339494 doi:10.2165/00007256-199724040-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Rowlands AV, Eston RG, Ingledew DK. Relationship between activity levels, aerobic fitness, and body fat in 8- to 10-yr-old children. J Appl Physiol. 1999;86(4):142835. PubMed ID: 10194232 doi:10.1152/jappl.1999.86.4.1428

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Ruiz JR, Cavero-Redondo I, Ortega FB, Welk GJ, Andersen LB, Martinez-Vizcaino V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis. Br J Sports Med. 2016;50(23):14511458.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55.

    Silva G, Aires L, Mota J, Oliveira J, Ribeiro JC. Normative and criterion-related standards for shuttle run performance in youth. Pediatr Exerc Sci. 2012;24(2):15769. PubMed ID: 22728409 doi:10.1123/pes.24.2.157

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Skinner JS, Wilmore KM, Jaskolska A, et al. Reproducibility of maximal exercise test data in the HERITAGE family study. Med Sci Sports Exerc. 1999;31(11):16238. PubMed ID: 10589867 doi:10.1097/00005768-199911000-00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Stokes M. Reliability and repeatability of methods for measuring muscle in physiotherapy. Physiother Pract. 1985;1(2):716. doi:10.3109/09593988509163853

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 58.

    Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):23140. PubMed ID: 15705040

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Welk GJ, Corbin CB, Dale D. Measurement issues in the assessment of physical activity in children. Res Q Exerc Sport. 2000;71 Suppl 2:5973. PubMed ID: 10925827 doi:10.1080/02701367.2000.11082788

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Williamson P, Atkinson G, Batterham A. Inter-Individual responses of maximal oxygen uptake to exercise training: a critical review. Sports Med. 2017;47(8):150113. PubMed ID: 28097487 doi:10.1007/s40279-017-0680-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1944 1007 107
Full Text Views 46 3 1
PDF Downloads 23 5 2