Validity of Garmin Vívofit 1 and Garmin Vívofit 3 for School-Based Physical Activity Monitoring

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: Activity trackers are useful tools for physical activity promotion in adolescents, but robust validity evaluations have not been done under free-living conditions. This study evaluated the validity of the Garmin Vívofit 1 (G1) and Garmin Vívofit 3 (G3) in different settings and contexts. Methods: The participants (girls: 52%, age: 15.9 [1.9] y) wore the G1 and G3 on their nondominant wrist and the Yamax pedometer on their right hip for a period of 1 week. Validity was examined in 4 discrete segments (before school, in school, after school, and whole day). The criterion method was the Yamax pedometer. Results: Both the G1 and G3 could be considered equivalent to the Yamax pedometer regarding the before school, in school, and whole day segments. The G1 showed wider limits of agreement than G3. Conclusions: The G1 and G3 trackers exhibited acceptable validity for 3 of the 4 segments (before school, in school, and whole day measurements). The results were less accurate during the after-school segment. The evidence that the validity of the monitors varied depending on the setting and context is an important consideration for research on adolescent activity patterns.

Šimůnek, Dygrýn, Jakubec, Neuls and Frömel are with the Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic. Welk is with the Department of Kinesiology, Iowa State University, Ames, IA, USA.

Šimůnek (adam.simunek01@upol.cz) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Adamakis M. Preliminary validation study of consumer-level activity monitors and mobile applications for step counting under free living conditions. J Mob Technol Med. 2017;6(1):2633. doi:10.7309/jmtm.6.1.4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Alsubheen SAGeorge AMBaker ARohr LEBasset FA. Accuracy of the vivofit activity tracker. J Med Eng Technol. 2016;40(6):298306. PubMed ID: 27266422 doi:10.1080/03091902.2016.1193238

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    An HSJones GCKang SKWelk GJLee JM. How valid are wearable physical activity trackers for measuring steps? Eur J Sport Sci. 2016;17(3):3608. PubMed ID: 27912681 doi:10.1080/17461391.2016.1255261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Andersen LBRiddoch CKriemler SHills AP. Physical activity and cardiovascular risk factors in children. Br J Sports Med. 2011;45(11):8716. PubMed ID: 21791456 doi:10.1136/bjsports-2011-090333

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Anderson EShivakumar G. Effects of exercise and physical activity on anxiety. Front Psychiatry. 2013;4(27):103. PubMed ID: 23630504 doi:10.3389/fpsyt.2013.00027

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Bland JMAltman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):30710. PubMed ID: 2868172 doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Brooke SMAn HSKang SKNoble JMBerg KELee JM. Concurrent validity of wearable activity trackers under free-living conditions. J Strength Cond Res. 2017;31(4):1097106. PubMed ID: 27465631 doi:10.1519/JSC.0000000000001571

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Butte NFPuyau MRAdolph ALVohra FAZakeri I. Physical activity in nonoverweight and overweight Hispanic children and adolescents. Med Sci Sports Exerc. 2007;39(8):125766. PubMed ID: 17762358 doi:10.1249/mss.0b013e3180621fb6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Chen MDKuo CCPellegrini CAHsu MJ. Accuracy of wristband activity monitors during ambulation and activities. Med Sci Sports Exerc. 2016;48(10):19429. PubMed ID: 27183123 doi:10.1249/MSS.0000000000000984

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Crouter SESchneider PLKarabulut MBassett DR. Validity of 10 electronic pedometers for measuring steps, distance, and energy cost. Med Sci Sports Exerc. 2003;35(8):145560. PubMed ID: 12900704 doi:10.1249/01.MSS.0000078932.61440.A2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Dixon PMSaint-Maurice PFKim YHibbing PBai YWelk GJ. A primer on the use of equivalence testing for evaluating measurement agreement. Med Sci Sports Exerc. 2018;50(4):83745. PubMed ID: 29135817 doi:10.1249/MSS.0000000000001481

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Fokkema TKooiman TJMKrijnen WPVan Der Schans CPDe Groot M. Reliability and validity of ten consumer activity trackers depend on walking speed. Med Sci Sports Exerc. 2017;49(4):793800. PubMed ID: 28319983 doi:10.1249/MSS.0000000000001146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Frömel KSvozil ZChmelik FJakubec LGroffik D. The role of physical education lessons and recesses in school lifestyle of adolescents. J Sch Health. 2016;86(2):14351. PubMed ID: 26762826 doi:10.1111/josh.12362

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Huang YXu JYu BShull PB. Validity of fitbit, jawbone up, nike+ and other wearable devices for level and stair walking. Gait Posture. 2016;48:3641. PubMed ID: 27477705 doi:10.1016/j.gaitpost.2016.04.025

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Lee JMKim YWelk GJ. Validity of consumer-based physical activity monitors. Med Sci Sports Exerc. 2014;46(9):18408. PubMed ID: 24777201 doi:10.1249/MSS.0000000000000287

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Leicht ASCrowther RG. Influence of non-level walking on pedometer accuracy. J Sci Med Sport. 2009;12(3):3615. PubMed ID: 18356103 doi:10.1016/j.jsams.2008.01.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Lopes RHCReid IHobson PR. The two-dimensional Kolmogorov-Smirnov test. In: Lovric M ed. International Encyclopedia of Statistical Science. Berlin, Germany: Springer; 2014:71820.

    • Search Google Scholar
    • Export Citation
  • 18.

    Lyons EJLewis ZHMayrsohn BGRowland JL. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis. J Med Internet Res. 2014;16(8):192. PubMed ID: 25131661 doi:10.2196/jmir.3469

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Maker R. Garmin Vivofit in-depth review. March 122014. http://www.dcrainmaker.com/2014/03/garmin-vivofit- review.html. Accessed October 11 2017.

    • Export Citation
  • 20.

    Maker R. Garmin’s new Vivoactive HR & Vivofit 3: hands-on & first run. February 222016. https://www.dcrainmaker.com/2016/02/garmins-vivoactivehr-vivofit3.html. Accessed October 11 2017.

    • Export Citation
  • 21.

    McMahon EMCorcoran PO’Regan Get al. Physical activity in European adolescents and associations with anxiety, depression and well-being. Eur Child Adolesc Psychiatry. 2017;26(1):11122. PubMed ID: 27277894 doi:10.1007/s00787-016-0875-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Mendoza MHan MMeyring-Wösten AWilund KKotanko P. It’s a non-dialysis day . . . do you know how your patient is doing? A case for research into interdialytic activity. Blood Purif. 2015;39(1–3):7483. PubMed ID: 25662096 doi:10.1159/000369430

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Mitáš JSas-Nowosielski KGroffik DFrömel K. The safety of the neighborhood environment and physical activity in Czech and Polish adolescents. Int J Environ Res Public Health. 2018;15(1):pii: E126. PubMed ID: 29329276 doi:10.3390/ijerph15010126

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Myttenaere ADGolden BGrand BLet al. Mean absolute percentage error for regression models. Neurocomputing. 2016;192:3848. doi:10.1016/j.neucom.2015.12.114

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Ng KTynjala JKokko S. Ownership and use of commercial physical activity trackers among Finnish adolescents: cross-sectional study. JMIR Mhealth Uhealth. 2017;5(5):e61. PubMed ID: 28473304 doi:10.2196/mhealth.6940

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    O’Neill BMcDonough SMWilson JJet al. Comparing accelerometer, pedometer and a questionnaire for measuring physical activity in bronchiectasis: a validity and feasibility study? Respir Res. 2017;18(1):110. PubMed ID: 28088206 doi:10.1186/s12931-016-0492-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Pearson K. Notes on regression and inheritance in the case of two parents. Proc R Soc Lond. 1895;58:2402. doi:10.1098/rspl.1895.0041

  • 28.

    Price KBird SRLythgo NRaj ISWong JYLLynch C. Validation of the fitbit one, Garmin Vivofit and Jawbone UP activity tracker in estimation of energy expenditure during treadmill walking and running. J Med Eng Technol. 2017;41(3):20815. PubMed ID: 27919170 doi:10.1080/03091902.2016.1253795

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Roura EMilá-Villarroel RLucia Pareja SAdot Caballero A. Assessment of eating habits and physical activity among Spanish adolescents. The “Cooking and Active Leisure” TAS Program. PLoS ONE. 2016;11(7):e0159962. PubMed ID: 27463105 doi:10.1371/journal.pone.0159962

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Schneider PLCrouter SEBassett DR. Pedometer measures of free-living physical activity: comparison of 13 models. Med Sci Sports Exerc. 2004;36(2):3315. PubMed ID: 14767259 doi:10.1249/01.MSS.0000113486.60548.E9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Šimůnek ADygryn JGaba AJakubec LStelzer JChmelik F. Validity of garmin vivofit and polar loop for measuring daily step counts in free-living conditions in adults. Acta Gymnica. 2016;46(3):12935. doi:10.5507/ag.2016.014

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Smith JD. Accuracy of wrist-worn activity monitors at three walking speeds on the treadmill. Med Sci Sports Exerc. 2016;48(5S):783. doi:10.1249/01.mss.0000487352.64658.a5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Tan VPMacdonald HMKim Set al. Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res. 2014;29(10):216181. PubMed ID: 24737388 doi:10.1002/jbmr.2254

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Tudor-Locke CCraig CLBrown WJet al. How many steps/day are enough? For adults. Int J Behav Nutr Phys Act. 2011;8:79. PubMed ID: 21798015 doi:10.1186/1479-5868-8-79

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Tudor-Locke CSisson SBLee SMCraig CLPlotnikoff RCBauman A. Evaluation of quality of commercial pedometers. Can J Public Health. 2006;97Suppl 1:S105. PubMed ID: 16676833 doi:10.17269/cjph.97.1544

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Ubrani JLlamas RShirer M. Wearables are not dead, they are just shifting focus as the market grows 16.9% in fourth quarter, according to IDC. March 22017. https://www.idc.com/getdoc.jsp?containerId=prUS42342317. Accessed October 9 2017.

    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 53 53 10
Full Text Views 3 3 0
PDF Downloads 0 0 0
Altmetric Badge
PubMed
Google Scholar
Cited By