Lower Limb Flexibility in Children With Duchenne Muscular Dystrophy: Effects on Functional Performance

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Objective: To investigate the effects of lower limb flexibility on the functional performance of children with Duchenne muscular dystrophy. Methods: Thirty children, whose functional levels were at 1 or 2 according to the Brooke Lower Extremity Functional Classification Scale, were included in this study. The flexibilities of the hamstrings, hip flexors, tensor fascia latae, and gastrocnemius muscles were evaluated in the children’s dominant lower limbs. The children’s functional performance was assessed using 6-minute walk tests and timed performance tests. The correlations between the flexibilities of the lower limb muscles and the performance tests were examined. Results: The flexibilities of the lower extremity muscles were found to be correlated to the 6-minute walk tests and the timed performance tests. The flexibility of the hamstrings (r = −.825), the gastrocnemius muscles (r = .545), the hip flexors (r = .481), and the tensor fascia latae (r = .445) were found to be correlated with functional performance as measured by the 6-minute walk tests (P < .05). Discussion: The results of the current study indicate that the flexibility of the lower limbs has an effect on functional performance in the early stages of Duchenne muscular dystrophy. More research is needed to determine the functional effects of flexibility on performance by adding long-term flexibility exercises to the physiotherapy programs of children with Duchenne muscular dystrophy.

The authors are with the Physiotherapy and Rehabilitation Department, Faculty of Health Sciences, Hacettepe University, Ankara, Turkey.

Alemdaroğlu Gürbüz (ipekalemdaroglu@windowslive.com) is corresponding author.
  • 1.

    Brooke MH, Griggs RC, Mendell JR, Fenichel GM, Shumate JB, Pellegrino RJ. Clinical trial in Duchenne dystrophy. I. The design of the protocol. Muscle Nerve. 1981;4(3):18697. PubMed ID: 7017401 doi:10.1002/mus.880040304

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Butler J, Main M, Muntoni F. G.P.162: the impact of reduced ankle range of movement on the functional abilities of patients with Duchenne muscular dystrophy. Neuromuscul Disord. 2014;24(9):854. doi:10.1016/j.nmd.2014.06.204

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Castro-Piñero J, Girela-Rejón MJ, González-Montesinos JL, et al. Percentile values for flexibility tests in youths aged 6 to 17 years: influence of weight status. Eur J Sport Sci. 2013;13(2):13948. doi:10.1080/17461391.2011.606833

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Chiang CC, Hsu CC, Chiang JY, Chang WC, Tsai JC. Flexibility of internal and external glenohumeral rotation of junior female tennis players and its correlation with performance ranking. J Phys Ther Sci. 2016;28(12):32969. PubMed ID: 28174438 doi:10.1589/jpts.28.3296

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Chung J, Smith AL, Hughes SC, et al. Twenty-year follow-up of newborn screening for patients with muscular dystrophy. Muscle Nerve. 2016;53(4):5708. PubMed ID: 26260293 doi:10.1002/mus.24880

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Çon M, Akyol P, Tural E, Taşmektepligil MY. Voleybolcuların esneklik ve vücut yağ yüzdesi değerlerinin dikey sıçrama performansına etkisi. Selçuk Üniversitesi Beden Eğitimi ve Spor Bilim Dergisi. 2012;14(2):2027.

    • Search Google Scholar
    • Export Citation
  • 7.

    Czaprowski D, Kędra A, Pawłowska P, Kolwicz-Gańko A, Leszczewska J, Tyrakowski M. The examination of the musculoskeletal system based only on the evaluation of pelvic-hip complex muscle and trunk flexibility may lead to failure to screen children for generalized joint hypermobility. PLoS ONE. 2015;10(3):0121360. PubMed ID: 25786251 doi:10.1371/journal.pone.0121360

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Czaprowski D, Leszczewska J, Kolwicz A, et al. The comparison of the effects of three physiotherapy techniques on hamstring flexibility in children: a prospective, randomized, single-blind study. PLoS ONE. 2013;8(8):e72026. PubMed ID: 23951281 doi:10.1371/journal.pone.0072026

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    De Bruin M, Smeulders M, Kreulen M. Why is joint range of motion limited in patients with cerebral palsy? J Hand Surg Eur Vol. 2013;38(1):813. PubMed ID: 22526515 doi:10.1177/1753193412444401

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Eagle M. Report on the muscular dystrophy campaign workshop: exercise in neuromuscular diseases Newcastle, January 2002. Neuromuscul Disord. 2002;12(10):97583. PubMed ID: 12467755 doi:10.1016/S0960-8966(02)00136-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Feldman DE, Shrier I, Rossignol M, Abenhaim L. Risk factors for the development of low back pain in adolescence. Am J Epidemiol. 2001;154(1):306. PubMed ID: 11427402 doi:10.1093/aje/154.1.30

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gaudreault N, Gravel D, Nadeau S. Evaluation of plantar flexion contracture contribution during the gait of children with Duchenne muscular dystrophy. J Electromyogr Kinesiol. 2009;19(3):e1806. PubMed ID: 17977021 doi:10.1016/j.jelekin.2007.09.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Glanzman AM, Flickinger JM, Dholakia KH, Bönnemann CG, Finkel RS. Serial casting for the management of ankle contracture in Duchenne muscular dystrophy. Pediatr Phys Ther. 2011;23(3):2759. PubMed ID: 21829124 doi:10.1097/PEP.0b013e318227c4e3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Hayran M. Sağlık Araştırmaları Için Temel Istatistik. Ankara, Turkey: Omega Araştırma; 2011.

  • 15.

    Hazar F, Taşmektepligil Y. The effects of balance and flexibility on agility in prepuberte period. Spormetre. 2008;4(1):912.

  • 16.

    Henderson G, Barnes CA, Portas MD. Factors associated with increased propensity for hamstring injury in English Premier League soccer players. J Sci Med Sport. 2010;13(4):397402. PubMed ID: 19800844 doi:10.1016/j.jsams.2009.08.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Hoffman EP, Brown RH Jr, Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):91928. PubMed ID: 3319190 doi:10.1016/0092-8674(87)90579-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Jones DA, Round JM. Skeletal Muscle in Health and Disease: A Textbook of Muscle Physiology. Manchester, UK: Manchester University Press; 1990.

    • Search Google Scholar
    • Export Citation
  • 19.

    Jung IY, Chae JH, Park SK, et al. The correlation analysis of functional factors and age with Duchenne muscular dystrophy. Ann Rehabil Med. 2012;36(1):2232. PubMed ID: 22506232 doi:10.5535/arm.2012.36.1.22

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Karaduman A, Yilmaz O, Alemdaroglu I, Topaloglu H. S.P.54 The effects of ankle position to function in Duchenne muscular dystrophy. Neuromuscul Disord. 2012;22(9–10):885. doi:10.1016/j.nmd.2012.06.272

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Kaya P, Alemdaroğlu İ, Yilmaz Ö, Karaduman A, Topaloğlu H. Farklı nöromusküler hastalıklarda ayak bileği limitasyonunun yürüme becerisi üzerine etkisi. Türk Fizyoterapi ve Rehabilitasyon Dergisi/Turk J Physiother Rehabil. 2014;2(25):16.

    • Search Google Scholar
    • Export Citation
  • 22.

    Kellis E, Galanis N, Kapetanos G, Natsis K. Architectural differences between the hamstring muscles. J Electromyogr Kinesiol. 2012;22(4):5206. PubMed ID: 22564790 doi:10.1016/j.jelekin.2012.03.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Lieber RL. Skeletal Muscle Structure, Function, and Plasticity. Philadelphia, PA: Lippincott Williams & Wilkins; 2002.

  • 24.

    Malloy P, Morgan A, Meinerz C, Geiser C, Kipp K. The association of dorsiflexion flexibility on knee kinematics and kinetics during a drop vertical jump in healthy female athletes. Knee Surg Sports Traumatol Arthrosc. 2015;23(12):35505. PubMed ID: 25112598 doi:10.1007/s00167-014-3222-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    McDonald CM, Henricson EK, Abresch RT, et al. The 6-minute walk test and other clinical endpoints in Duchenne muscular dystrophy: reliability, concurrent validity, and minimal clinically important differences from a multicenter study. Muscle Nerve. 2013;48(3):35768. PubMed ID: 23674289 doi:10.1002/mus.23905

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    McDonald CM, Henricson EK, Han JJ, et al. The 6-minute walk test as a new outcome measure in Duchenne muscular dystrophy. Muscle Nerve. 2010;41(4):50010. PubMed ID: 19941337 doi:10.1002/mus.21544

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Otman A, Demirel H, Sade A. Tedavi Hareketlerinde Temel Değerlendirme Prensipleri. Ankara, Turkey: Pelikan Yayıncılık; 2014.

  • 28.

    Pane M, Scalise R, Berardinelli A, et al. Early neurodevelopmental assessment in Duchenne muscular dystrophy. Neuromuscul Disord. 2013;23(6):4515. PubMed ID: 23535446 doi:10.1016/j.nmd.2013.02.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Poysky J. Behavior patterns in Duchenne muscular dystrophy: report on the Parent Project Muscular Dystrophy behavior workshop 8–9 of December 2006, Philadelphia, USA. Neuromuscul Disord. 2007;17(11–12):98694. PubMed ID: 17720499 doi:10.1016/j.nmd.2007.06.465

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Regev GJ, Kim CW, Tomiya A, et al. Psoas muscle architectural design, in vivo sarcomere length range, and passive tensile properties support its role as a lumbar spine stabilizer. Spine. 2011;36(26):E166674. PubMed ID: 21415810 doi:10.1097/BRS.0b013e31821847b3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Wagner T, Behnia N, Ancheta WK, Shen R, Farrokhi S, Powers CM. Strengthening and neuromuscular reeducation of the gluteus maximus in a triathlete with exercise-associated cramping of the hamstrings. J Orthop Sports Phys Ther. 2010;40(2):1129. PubMed ID: 20118522 doi:10.2519/jospt.2010.3110

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 522 493 30
Full Text Views 25 25 0
PDF Downloads 18 18 0