The Effect of Functional Home-Based Strength Training Programs on the Mechano-Morphological Properties of the Plantar Flexor Muscle-Tendon Unit in Children With Spastic Cerebral Palsy

in Pediatric Exercise Science

Click name to view affiliation

Annika Kruse University of Graz

Search for other papers by Annika Kruse in
Current site
Google Scholar
PubMed
Close
*
,
Christian Schranz Medical University of Graz

Search for other papers by Christian Schranz in
Current site
Google Scholar
PubMed
Close
*
,
Martin Svehlik Medical University of Graz

Search for other papers by Martin Svehlik in
Current site
Google Scholar
PubMed
Close
*
, and
Markus Tilp University of Graz

Search for other papers by Markus Tilp in
Current site
Google Scholar
PubMed
Close
*
Restricted access

Purpose: The purpose of this study was to investigate the effects of functional progressive resistance training (PRT) and high-intensity circuit training (HICT) on the mechano-morphological properties of the plantar flexor muscle-tendon unit in children with spastic cerebral palsy. Methods: Twenty-two children (12.8 [2.6] y old, Gross Motor Function Classification System levels I/II = 19/3) were randomly assigned to either a PRT group or an HICT group. The interventions consisted of functional lower limb exercises, which were performed at home 3 times per week for 8 weeks. Measurements at baseline, preintervention, postintervention, and follow-up were taken to assess ankle joint range of motion and the properties of the gastrocnemius medialis, vastus lateralis, rectus femoris, and Achilles tendon (eg, thickness, strength, stiffness). Results: Despite a nonsignificant increase in active torque in the HICT group, neither gastrocnemius medialis morphology nor Achilles tendon properties were significantly altered after the interventions. Vastus lateralis thickness increased following PRT only. Conclusions: Functional home-based strength training did not lead to significant changes at the muscular level in children with cerebral palsy. We therefore assume that a more specific stimulus of higher intensity combined with a longer training duration might be necessary to evoke changes in muscles and tendons in individuals with cerebral palsy.

Kruse and Tilp are with the Institute of Sports Science, University of Graz, Graz, Austria. Schranz and Svehlik are with the Department of Paediatric Surgery, Medical University of Graz, Graz, Austria.

Kruse (annikakruse1@gmx.de) is corresponding author.
  • Collapse
  • Expand
  • 1.

    Barber L, Barrett R, Lichtwark G. Medial gastrocnemius muscle fascicle active torque-length and Achilles tendon properties in young adults with spastic cerebral palsy. J Biomech. 2012;45(15):252630. PubMed ID: 22867763 doi:10.1016/j.jbiomech.2012.07.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Barber L, Barrett R, Lichtwark G. Passive muscle mechanical properties of the medial gastrocnemius in young adults with spastic cerebral palsy. J Biomech. 2011;44(13):2496500. PubMed ID: 21762920 doi:10.1016/j.jbiomech.2011.06.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Barber L, Hastings-Ison T, Baker R, Barrett R, Lichtwark G. Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol. 2011;53(6):5438. PubMed ID: 21506995 doi:10.1111/j.1469-8749.2011.03913.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Barrett RS, Lichtwark GA. Gross muscle morphology and structure in spastic cerebral palsy: a systematic review. Dev Med Child Neurol. 2010;52(9):794804. PubMed ID: 20477832 doi:10.1111/j.1469-8749.2010.03686.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Behm DG, Faigenbaum AD, Falk B, Klentrou P. Canadian society for exercise physiology position paper: resistance training in children and adolescents. Appl Physiol Nutr Metab. 2008;33(3):54761. PubMed ID: 18461111 doi:10.1139/H08-020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Benard MR, Becher JG, Harlaar J, Huijing PA, Jaspers RT. Anatomical information is needed in ultrasound imaging of muscle to avoid potentially substantial errors in measurement of muscle geometry. Muscle Nerve. 2009;39(5):65265. PubMed ID: 19291798 doi:10.1002/mus.21287

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Damiano DL, Arnold AS, Steele KM, Delp SL. Can strength training predictably improve gait kinematics? A pilot study on the effects of hip and knee extensor strengthening on lower-extremity alignment in cerebral palsy. Phys Ther. 2010;90(2):26979. PubMed ID: 20022999 doi:10.2522/ptj.20090062

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Damiano DL, Martellotta TL, Sullivan DJ, Granata KP, Abel MF. Muscle force production and functional performance in spastic cerebral palsy: relationship of cocontraction. Arch Phys Med Rehabil. 2000;81(7):895900. PubMed ID: 10896001 doi:10.1053/apmr.2000.5579

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Faigenbaum AD, Kraemer WJ, Blimkie CJR, et al. Youth resistance training: updated position statement paper from the national strength and conditioning association. J Strength Cond Res. 2009;23(5):6079. doi:10.1519/JSC.0b013e31819df407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Gao F, Zhao H, Gaebler-Spira D, Zhang LQ. In vivo evaluations of morphologic changes of gastrocnemius muscle fascicles and Achilles tendon in children with cerebral palsy. Am J Phys Med Rehabil. 2011;90(5):36471. PubMed ID: 21765255 doi:10.1097/PHM.0b013e318214f699

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Gillett JG, Boyd RN, Carty CP, Barber LA. The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: a systematic review. Res Dev Disabil. 2016;56:18396. PubMed ID: 27337690 doi:10.1016/j.ridd.2016.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Gmiat A, Micielska K, Kozlowska M, et al. The impact of a single bout of high intensity circuit training on myokines’ concentrations and cognitive functions in women of different age. Physiol Behav. 2017;179:2907. PubMed ID: 28687176 doi:10.1016/j.physbeh.2017.07.004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Graham HK, Rosenbaum P, Paneth N, et al. Cerebral palsy. Nat Rev Dis Primers. 2016;2:15082. PubMed ID: 27188686 doi:10.1038/nrdp.2015.82

  • 14.

    Haltom RW, Kraemer RR, Sloan RA, Hebert EP, Frank K, Tryniecki JL. Circuit weight training and its effects on excess postexercise oxygen consumption. Med Sci Sports Exerc. 1999;31(11):16138. PubMed ID: 10589865 doi:10.1097/00005768-199911000-00018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Hosl M, Bohm H, Arampatzis A, Doderlein L. Effects of ankle-foot braces on medial gastrocnemius morphometrics and gait in children with cerebral palsy. J Child Orthop. 2015;9(3):20919. PubMed ID: 26108740 doi:10.1007/s11832-015-0664-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Klika B, Jordan C. High-intensity circuit training using body weight: maximum results with minimal investment. ACSMs Health Fit J. 2013;17(3):813. PubMed ID: 30204627 doi:10.1249/FIT.0b013e31828cb1e8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Konrad A, Tilp M. Increased range of motion after static stretching is not due to changes in muscle and tendon structures. Clin Biomech. 2014;29(6):63642. doi:10.1016/j.clinbiomech.2014.04.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Kruse A, Schranz C, Svehlik M, Tilp M. Mechanical muscle and tendon properties of the plantar flexors are altered even in highly functional children with spastic cerebral palsy. Clin Biomech. 2017;50:13944. doi:10.1016/j.clinbiomech.2017.10.019

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Kruse A, Stafilidis S, Tilp M. Ultrasound and magnetic resonance imaging are not interchangeable to assess the Achilles tendon cross-sectional-area. Eur J Appl Physiol. 2017;117(1):7382. PubMed ID: 27838848 doi:10.1007/s00421-016-3500-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Lee M, Ko Y, Shin MMS, Lee W. The effects of progressive functional training on lower limb muscle architecture and motor function in children with spastic cerebral palsy. J Phys Ther Sci. 2015;27(5):15814. PubMed ID: 26157267 doi:10.1589/jpts.27.1581

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Malaiya R, McNee AE, Fry NR, Eve LC, Gough M, Shortland AP. The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol. 2007;17(6):65763. PubMed ID: 17459729 doi:10.1016/j.jelekin.2007.02.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    McNee AE, Gough M, Morrissey MC, Shortland AP. Increases in muscle volume after plantarflexor strength training in children with spastic cerebral palsy. Dev Med Child Neurol. 2009;51(6):42935. PubMed ID: 19170722 doi:10.1111/j.1469-8749.2008.03230.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Miller MB, Pearcey GEP, Cahill F, et al. The effect of a short-term high-intensity circuit training program on work capacity, body composition, and blood profiles in sedentary obese men: a pilot study. Biomed Res Int. 2014;2014:191797. PubMed ID: 24707476

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Mohagheghi AA, Khan T, Meadows TH, Giannikas K, Baltzopoulos V, Maganaris CN. Differences in gastrocnemius muscle architecture between the paretic and non-paretic legs in children with hemiplegic cerebral palsy. Clin Biomech. 2007;22(6):71824. doi:10.1016/j.clinbiomech.2007.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Mohagheghi AA, Khan T, Meadows TH, Giannikas K, Baltzopoulos V, Maganaris CN. In vivo gastrocnemius muscle fascicle length in children with and without diplegic cerebral palsy. Dev Med Child Neurol. 2008;50(1):4450. PubMed ID: 18173630 doi:10.1111/j.1469-8749.2007.02008.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Moreau NG, Falvo MJ, Damiano DL. Rapid force generation is impaired in cerebral palsy and is related to decreased muscle size and functional mobility. Gait Posture. 2012;35(1):1548. PubMed ID: 21930383 doi:10.1016/j.gaitpost.2011.08.027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Moreau NG, Holthaus K, Marlow N. Differential adaptations of muscle architecture to high-velocity versus traditional strength training in cerebral palsy. Neurorehabil Neural Repair. 2013;27(4):32534. PubMed ID: 23292847 doi:10.1177/1545968312469834

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Park EY, Kim WH. Meta-analysis of the effect of strengthening interventions in individuals with cerebral palsy. Res Dev Disabil. 2014;35(2):23949. PubMed ID: 24291625 doi:10.1016/j.ridd.2013.10.021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Scholtes VA, Becher JG, Comuth A, Dekkers H, van Dijk L, Dallmeijer AJ. Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2010;52(6):e10713. PubMed ID: 20132136 doi:10.1111/j.1469-8749.2009.03604.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Scholtes VA, Dallmeijer AJ, Rameckers EA, et al. Lower limb strength training in children with cerebral palsy—a randomized controlled trial protocol for functional strength training based on progressive resistance exercise principles. BMC Pediatr. 2008;8:41. PubMed ID: 18842125 doi:10.1186/1471-2431-8-41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Schranz C, Kruse A, Belohlavek T, Tilp M, Steinwender G, Svehlik M. High Intensity Circuit Training and Progressive Resistance Training improve functional performance but not the Gait Profile Score. Gait Posture. 2017;57:301.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Scianni A, Butler JM, Ada L, Teixeira-Salmela LF. Muscle strengthening is not effective in children and adolescents with cerebral palsy: a systematic review. Aust J Physiother. 2009;55(2):817. PubMed ID: 19463078 doi:10.1016/S0004-9514(09)70037-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Taylor NF, Dodd KJ, Baker RJ, Willoughby K, Thomason P, Graham HK. Progressive resistance training and mobility-related function in young people with cerebral palsy: a randomized controlled trial. Dev Med Child Neurol. 2013;55(9):80612. PubMed ID: 23789741 doi:10.1111/dmcn.12190

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Theis N, Mohagheghi AA, Korff T. Mechanical and material properties of the plantarflexor muscles and Achilles tendon in children with spastic cerebral palsy and typically developing children. J Biomech. 2016;49(13):30048. PubMed ID: 27515440 doi:10.1016/j.jbiomech.2016.07.020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Verschuren O, Ketelaar M, Takken T, Helders PJM, Gorter JW. Exercise programs for children with cerebral palsy: a systematic review of the literature. Am J Phys Med Rehabil. 2008;87(5):40417. PubMed ID: 17993987 doi:10.1097/PHM.0b013e31815b2675

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Waugh CM, Korff T, Fath F, Blazevich AJ. Effects of resistance training on tendon mechanical properties and rapid force production in prepubertal children. J Appl Physiol. 2014;117(3):25766. PubMed ID: 24903920 doi:10.1152/japplphysiol.00325.2014

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Williams SA, Elliott C, Valentine J, Gubbay A, Shipman P, Reid S. Combining strength training and botulinum neurotoxin intervention in children with cerebral palsy: the impact on muscle morphology and strength. Disabil Rehabil. 2013;35(7):596605. PubMed ID: 22928803 doi:10.3109/09638288.2012.711898

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Wren TA, Cheatwood AP, Rethlefsen SA, Hara R, Perez FJ, Kay RM. Achilles tendon length and medial gastrocnemius architecture in children with cerebral palsy and equinus gait. J Pediatr Orthop. 2010;30(5):47984. PubMed ID: 20574267 doi:10.1097/BPO.0b013e3181e00c80

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Zhao H, Wu YN, Hwang M, et al. Changes of calf muscle-tendon biomechanical properties induced by passive-stretching and active-movement training in children with cerebral palsy. J Appl Physiol. 2011;111(2):43542. PubMed ID: 21596920 doi:10.1152/japplphysiol.01361.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3808 989 42
Full Text Views 76 13 1
PDF Downloads 93 18 2