Maturity-Related Differences in Systemic Pulmonary and Localized Fatigue Threshold Among Youth Male Athletes

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Purpose: To examine the reliability and the maturity-related differences of fatigue thresholds (FTs) among youth males. Methods: Twenty-nine youth males (11–17 y) completed 2 ramp exercise tests on a cycle ergometer. Systemic FTs were calculated from gas exchange and ventilation variables. Localized FTs were calculated from electromyography and near-infrared spectroscopy of the vastus lateralis. All FTs were determined using the maximal distance method and expressed relative to maximal oxygen consumption. All participants were grouped according to the number of years from peak height velocity into PRE- (< −1.5 y), PERI- (−1.5 to +1.5 y) and POST- (> +1.5 y) peak height velocity. Reliability was assessed with intraclass correlation coefficients, and differences between groups were assessed with analysis of variance and Cohen’s d coefficients. Results: Analysis of variance revealed significant group differences with PRE having significantly greater systemic pulmonary FTs than POST, while localized muscular FTs were significantly greater in PRE when compared with PERI and POST. All FTs exhibited excellent reliability (intraclass correlation coefficient > .75) in all maturity groups. Conclusion: Maturity status appears to influence the onset of FTs among youth male athletes, with FTs occurring later in younger athletes. Furthermore, all FTs were reliable measures regardless of maturity.

Beyer, Stout, Redd, Baker, Hoffman, and Fukuda are with the Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL. Beyer is also with the Department of Exercise Science, Bloomsburg University of Pennsylvania, Bloomsburg, PA. Bergstrom is with the Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, KY.

Beyer (kbeyer@bloomu.edu) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Anderson CSMahon AD. The relationship between ventilatory and lactate thresholds in boys and men. Res Sports Med. 2007;15(3):189200. PubMed ID: 17987507 doi:10.1080/15438620701525490

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Armstrong NKirby BJMcManus AMWelsman JR. Aerobic fitness of prepubescent children. Ann Hum Biol. 1995;22(5):42741. PubMed ID: 8744997 doi:10.1080/03014469500004102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Barker ARWilliams CAJones AMArmstrong N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. 2011;45(6):498503. PubMed ID: 19679577 doi:10.1136/bjsm.2009.063180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Baxter-Jones AD. Growth and development of young athletes. Should competition levels be age related? Sports Med. 1995;20(2):5964. PubMed ID: 7481282 doi:10.2165/00007256-199520020-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Baxter-Jones ADEisenmann JCSherar LB. Controlling for maturation in pediatric exercise science. Pediatr Exerc Sci. 2005;17(1):1830. doi:10.1123/pes.17.1.18

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Beaver WLWasserman KWhipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol. 1986;60(6):20207. PubMed ID: 3087938 doi:10.1152/jappl.1986.60.6.2020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Beneke RHütler MLeithäuser RM. Anaerobic performance and metabolism in boys and male adolescents. Eur J Appl Physiol. 2007;101(6):6717. PubMed ID: 17710431 doi:10.1007/s00421-007-0546-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bergstrom HCHoush TJCochrane KCet al. An examination of neuromuscular and metabolic fatigue thresholds. Physiol Meas. 2013;34(10):125367. PubMed ID: 24021781 doi:10.1088/0967-3334/34/10/1253

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Boisseau NDelamarche P. Metabolic and hormonal responses to exercise in children and adolescents. Sports Med. 2000;30(6):40522. PubMed ID: 11132123 doi:10.2165/00007256-200030060-00003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Boone JVandekerckhove KCoomans IPrieur FBourgois JG. An integrated view on the oxygenation responses to incremental exercise at the brain, the locomotor and respiratory muscles. Eur J Appl Physiol. 2016;116(11–12):2085102. PubMed ID: 27613650 doi:10.1007/s00421-016-3468-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cheng BKuipers HSnyder ACKeizer HAJeukendrup AHesselink M. A new approach for the determination of ventilatory and lactate thresholds. Int J Sports Med. 1992;13(7):51822. PubMed ID: 1459746 doi:10.1055/s-2007-1021309

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.

  • 13.

    Cunha GLorenzi TSapata KLopes ALGaya ACOliveira Á. Effect of biological maturation on maximal oxygen uptake and ventilatory thresholds in soccer players: an allometric approach. J Sports Sci. 2011;29(10):102939. PubMed ID: 21590578 doi:10.1080/02640414.2011.570775

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Cunha GDVaz MAGeremia JMet al. Maturity status does not exert effects on aerobic fitness in soccer players after appropriate normalization for body size. Pediatr Exerc Sci. 2016;28(3):45665. PubMed ID: 26694739 doi:10.1123/pes.2015-0133

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Davis JAWhipp BJLamarra NHuntsman DJFrank MHWasserman K. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test. Med Sci Sports Exerc. 1982;14(5):33943. PubMed ID: 7154888 doi:10.1249/00005768-198205000-00005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Dotan RMitchell CCohen RKlentrou PGabriel DFalk B. Child–adult differences in muscle activation—a review. Pediatr Exerc Sci. 2012;24(1):221. PubMed ID: 22433260 doi:10.1123/pes.24.1.2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Eriksson BOGollnick PDSaltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand. 1973;87(4):48597. PubMed ID: 4269332 doi:10.1111/j.1748-1716.1973.tb05415.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Eriksson OSaltin B. Muscle metabolism during exercise in boys aged 11 to 16 years compared to adults. Acta Paediatr Belg. 1974;28:25765. PubMed ID: 4446986

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Fournier MRicci JTaylor AWFerguson RJMontpetit RRChaitman BR. Skeletal muscle adaptation in adolescent boys: sprint and endurance training and detraining. Med Sci Sports Exerc. 1982;14(6):4536. PubMed ID: 6219266 doi:10.1249/00005768-198206000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Hermens HJFreriks BMerletti Ret al. European Recommendations for Surface Electromyography. Enschede, The Netherlands: Roessingh Research and Development; 1999.

    • Search Google Scholar
    • Export Citation
  • 21.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):115. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Iuliano-Burns SMirwald RLBailey DA. Timing and magnitude of peak height velocity and peak tissue velocities for early, average, and late maturing boys and girls. Am J Hum Biol. 2001;13(1):18. PubMed ID: 11466961 doi:10.1002/1520-6300(200101/02)13:1<1::AID-AJHB1000>3.0.CO;2-S

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Jansson E. Age-related fiber type changes in human skeletal muscle. In Maughan RJShirreffs SMeds. Biochemistry of Exercise IX. Champaign, IL: Human Kinetics; 1996:297307.

    • Search Google Scholar
    • Export Citation
  • 24.

    Klentrou PNishio MLPlyley M. Ventilatory breakpoints in boys and men. Pediatr Exerc Sci. 2006;18(2):21625. doi:10.1123/pes.18.2.216

  • 25.

    Lexell JSjöström MNordlund ASTaylor CC. Growth and development of human muscle: a quantitative morphological study of whole vastus lateralis from childhood to adult age. Muscle Nerve. 1992;15(3):4049. PubMed ID: 1557091 doi:10.1002/mus.880150323

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Lloyd RSOliver JLFaigenbaum ADMyer GDDe Ste Croix MB. Chronological age vs. biological maturation: implications for exercise programming in youth. J Strength Cond Res. 2014;28(5):145464. PubMed ID: 24476778 doi:10.1519/JSC.0000000000000391

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Long DDotan RPitt Bet al. The electromyographic threshold in girls and women. Pediatr Exerc Sci. 2017;29(1):8493. PubMed ID: 27427951 doi:10.1123/pes.2016-0056

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Machado FANakamura FYMoraes SM. Influence of regression model and incremental test protocol on the relationship between lactate threshold using the maximal-deviation method and performance in female runners. J Sports Sci. 2012;30(12):126774. PubMed ID: 22775431 doi:10.1080/02640414.2012.702424

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McNarry MAWelsman JRJones AM. Influence of training and maturity status on the cardiopulmonary responses to ramp incremental cycle and upper body exercise in girls. J Appl Physiol. 2011;110(2):37581. PubMed ID: 21088206 doi:10.1152/japplphysiol.00988.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Mirwald RLBaxter-Jones ADBailey DABeunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34(4):68994. PubMed ID: 11932580 doi:10.1249/00005768-200204000-00020

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Pitt BDotan RMillar Jet al. The electromyographic threshold in boys and men. Eur J Appl Physiol. 2015;115(6):127381. PubMed ID: 25588894 doi:10.1007/s00421-015-3100-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Reybrouck TWeymans MStijns HKnops JVan der Hauwaert L. Ventilatory anaerobic threshold in healthy children. Eur J Appl Physiol. 1985;54(3):27884. PubMed ID: 4065111 doi:10.1007/BF00426145

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Riddell MCJamnik VKIscoe KETimmons BWGledhill N. Fat oxidation rate and the exercise intensity that elicits maximal fat oxidation decreases with pubertal status in young male subjects. J Appl Physiol. 2008;105(2):7428. PubMed ID: 18535137 doi:10.1152/japplphysiol.01256.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Riffe JJStout JRFukuda DHet al. The Dmax method is a valid procedure to estimate physical working capacity at fatigue threshold. Muscle Nerve. 2017;55(3):3449. PubMed ID: 27422091 doi:10.1002/mus.25255

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sherar LBMirwald RLBaxter-Jones ADThomis M. Prediction of adult height using maturity-based cumulative height velocity curves. J Pediatr. 2005;147(4):50814. PubMed ID: 16227038 doi:10.1016/j.jpeds.2005.04.041

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Shrout PEFleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):4208. PubMed ID: 18839484 doi:10.1037/0033-2909.86.2.420

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Stephens BCole ASMahon AD. The influence of biological maturation on fat and carbohydrate metabolism during exercise in males. Int J Sport Nutr Exerc Metab. 2006;16(2):16679. PubMed ID: 16779923 doi:10.1123/ijsnem.16.2.166

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Tambovtseva RVKornienko IA. Development of various types of muscle fibers in the quadriceps femoris and the soleus during human ontogenesis. Arkh Anat Gistol Embriol. 1986;91(9):969. PubMed ID: 2947554

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    van der Zwaard SJaspers RTBlokland IJet al. Oxygenation threshold derived from near-infrared spectroscopy: reliability and its relationship with the first ventilatory threshold. PLoS ONE. 2016;11(9):0162914. PubMed ID: 27631607 doi:10.1371/journal.pone.0162914

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Weir JP. Quantifying test–retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005;19(1):23140. PubMed ID: 15705040 doi:10.1519/15184.1

    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 58 58 23
Full Text Views 6 6 1
PDF Downloads 3 3 0
Altmetric Badge
PubMed
Google Scholar