Measurement and Interpretation of Maximal Aerobic Power in Children

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

The assessment of maximal aerobic power (V˙O2max) in both children and adults is an invaluable tool for the evaluation of exercise performance capacity and general physical fitness in clinical, athletic, public health, and research applications. The complexity of means and considerations, as well as varying specific aims of V˙O2max testing, has prevented the formulation of a universally applicable, standard testing protocol, in general, and for children in particular. Numerous tester-controllable factors, such as exercise modality, metabolic measurement system, testing protocol, or data reduction strategies, can affect both the measurement and interpretation of V˙O2max data. Although the general guiding principles are similar, children differ from adults in several aspects. One notable difference is the frequent absence of a discernible V˙O2 plateau in children. Thus, the proper choice of equipment and procedures may be different for children than for adults. It is therefore the aim of this article to highlight the general and pediatric-specific considerations that may affect V˙O2max measurement and interpretation of results.

Falk is with the Faculty of Applied Health Sciences, Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, St Catharines, Ontario, Canada. Dotan is with the Faculty of Applied Health Sciences, Brock University, St Catharines, Ontario, Canada.

Falk (bfalk@brocku.ca) is corresponding author.
  • 1.

    Armstrong N, van Mechelen W. Oxford Textbook of Children’s Sport and Exercise Medicine. 3rd ed. Oxford, UK: Oxford University Press; 2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Armstrong N, Williams J, Balding J, Gentle P, Kirby B. The peak oxygen uptake of British children with reference to age, sex and sexual maturity. Eur J Appl Physiol Occup Physiol. 1991;62(5):36975. PubMed ID: 1874245 doi:10.1007/BF00634975

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Ashish N, Bamman MM, Cerny FJ, et al. The clinical translation gap in child health exercise research: a call for disruptive innovation. Clin Transl Sci. 2015;8(1):6776. PubMed ID: 25109386 doi:10.1111/cts.12194

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Astrand PO. Experimental Studies of Physical Work Capacity in Relation to Sex and Age. Copenhagen, Denmark: Mundsgaard; 1952.

  • 5.

    Azevedo P, Bhammar DM, Babb TG, et al. Commentaries on viewpoint: V ˙ O 2 peak is an acceptable estimate of cardiorespiratory fitness but not V ˙ O 2 max. J Appl Physiol. 2018;125(1):23340. doi:10.1152/japplphysiol.00319.2018

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Baquet G, van Praagh E, Berthoin S. Endurance training and aerobic fitness in young people. Sports Med. 2003;33(15):112743. PubMed ID: 14719981 doi:10.2165/00007256-200333150-00004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Barker AR, Williams CA, Jones AM, Armstrong N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. 2011;45(6):498503. PubMed ID: 19679577 doi:10.1136/bjsm.2009.063180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bar-Or O. Pediatric Sports Medicine for the Practitioner. New York, UK: Springer-Verlag; 1983.

  • 9.

    Bar-Or O, Rowland T. Pediatric Exercise Medicine. Champaign, IL: Human Kinetics; 2004.

  • 10.

    Blanchard J, Blais S, Chetaille P, et al. New reference values for cardiopulmonary exercise testing in children. Med Sci Sports Exerc. 2018;50(6):112533. PubMed ID: 29346167 doi:10.1249/MSS.0000000000001559

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Capellini I, Venditti C, Barton RA. Phylogeny and metabolic scaling in mammals. Ecology. 2010;91(9):278393. PubMed ID: 20957970 doi:10.1890/09-0817.1

  • 12.

    Cooper DM, Leu SY, Galassetti P, Radom-Aizik S. Dynamic interactions of gas exchange, body mass, and progressive exercise in children. Med Sci Sports Exerc. 2014;46(5):87786. PubMed ID: 24091992 doi:10.1249/MSS.0000000000000180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Cooper DM, Weiler-Ravell D, Whipp BJ, Wasserman K. Growth-related changes in oxygen uptake and heart rate during progressive exercise in children. Pediatr Res. 1984;18(9):84551. PubMed ID: 6483507 doi:10.1203/00006450-198409000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dotan R. Children’s aerobic trainability and related questions. Res Q Exerc Sport. 2017;88(4):37783. PubMed ID: 28967843 doi:10.1080/02701367.2017.1371546

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Geithner CA, Thomis MA, Vanden Eynde B, et al. Growth in peak aerobic power during adolescence. Med Sci Sports Exerc. 2004;36(9):161624. PubMed ID: 15354046 doi:10.1249/01.MSS.0000139807.72229.41

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Godfrey S, Davies CT, Wozniak E, Barnes CA. Cardio-respiratory response to exercise in normal children. Clin Sci. 1971;40(5):41931. PubMed ID: 5556096 doi:10.1042/cs0400419

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Gomes EL, Carvalho CR, Peixoto-Souza FS, et al. Active video game exercise training improves the clinical control of asthma in children: Randomized controlled trial. PLoS ONE. 2015;10(8):0135433. PubMed ID: 26301706 doi:10.1371/journal.pone.0135433

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Green S, Askew C. V ˙ O 2 peak is an acceptable estimate of cardiorespiratory fitness but not VO2max. J Appl Physiol. 2018;125(1):22932. doi:10.1152/japplphysiol.00850.2017

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Hebestreit H, Staschen B, Hebestreit A. Ventilatory threshold: a useful method to determine aerobic fitness in children? Med Sci Sports Exerc. 2000;32(11):19649. PubMed ID: 11079529 doi:10.1097/00005768-200011000-00022

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Inbar O, Bar-Or O. The effects of intermittent warm-up on 7–9 year-old boys. Eur J Appl Physiol Occup Physiol. 1975;34(2):819. PubMed ID: 1193092 doi:10.1007/BF00999919

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    James FW, Blomqvist CG, Freed MD, et al. Standards for exercise testing in the pediatric age group. American Heart Association Council on Cardiovascular Disease in the Young. Ad hoc committee on exercise testing. Circulation. 1982;66(6):1377A97A. PubMed ID: 7139910

    • Search Google Scholar
    • Export Citation
  • 22.

    James FW, Kaplan S, Glueck CJ, Tsay JY, Knight MJ, Sarwar CJ. Responses of normal children and young adults to controlled bicycle exercise. Circulation. 1980;61(5):90212. PubMed ID: 7363434 doi:10.1161/01.CIR.61.5.902

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Janz KF, Burns TL, Witt JD, Mahoney LT. Longitudinal analysis of scaling VO2 for differences in body size during puberty: the Muscatine study. Med Sci Sports Exerc. 1998;30(9):143644. PubMed ID: 9741614

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kamon E, Pandolf KB. Maximal aerobic power during laddermill climbing, uphill running, and cycling. J Appl Physiol. 1972;32(4):46773. PubMed ID: 5026493 doi:10.1152/jappl.1972.32.4.467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Kemper HC, van Mechelen W, Post GB, et al. The Amsterdam growth and health longitudinal study. The past (1976–1996) and future (1997–?). Int J Sports Med. 1997;18(suppl 3):S14050. doi:10.1055/s-2007-972707

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Kleiber M. Body size and metabolic rate. Physiol Rev. 1947;27(4):51141. PubMed ID: 20267758 doi:10.1152/physrev.1947.27.4.511

  • 27.

    Krahenbuhl GS, Skinner JS, Kohrt WM. Developmental aspects of maximal aerobic power in children. Exerc Sport Sci Rev. 1985;13:50338. PubMed ID: 3891374 doi:10.1249/00003677-198500130-00015

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    LeMura LM, von Duvillard SP, Cohen SL, et al. Treadmill and cycle ergometry testing in 5- to 6-year-old children. Eur J Appl Physiol. 2001;85(5):4728. PubMed ID: 11606017 doi:10.1007/s004210100461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    McManus AM, Armstrong N. Maximal oxygen uptake. In: Rowland TW, ed. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign, IL: Human Kinetics; 2018:7994.

    • Search Google Scholar
    • Export Citation
  • 30.

    Midgley AW, Carroll S, Marchant D, McNaughton LR, Siegler J. Evaluation of true maximal oxygen uptake based on a novel set of standardized criteria. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition Et Metabolisme. 2009;34(2):11523. PubMed ID: 19370041 doi:10.1139/H08-146

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Mirwald RL, Bailey DA, Cameron N, Rasmussen RL. Longitudinal comparison of aerobic power in active and inactive boys aged 7.0 to 17.0 years. Ann Hum Biol. 1981;8(5):40514. PubMed ID: 7294718 doi:10.1080/03014468100005231

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Nevill AM, Holder RL. Scaling, normalizing, and per ratio standards: an allometric modeling approach. J Appl Physiol. 1995;79(3):102731. doi:10.1152/jappl.1995.79.3.1027

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Nixon PA, Orenstein DM, Kelsey SF, Doershuk CF. The prognostic value of exercise testing in patients with cystic fibrosis. N Engl J Med. 1992;327(25):17858. PubMed ID: 1435933 doi:10.1056/NEJM199212173272504

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Paridon SM, Alpert BS, Boas SR, et al. Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on cardiovascular disease in the young, committee on atherosclerosis, hypertension, and obesity in youth. Circulation. 2006;113(15):190520. PubMed ID: 16567564 doi:10.1161/CIRCULATIONAHA.106.174375

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Paterson DH, Cunningham DA, Donner A. The effect of different treadmill speeds on the variability of V ˙ O 2 max in children. Eur J Appl Physiol Occup Physiol. 1981;47(2):11322. PubMed ID: 7197211 doi:10.1007/BF00421663

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Pfeiffer KA, Lobelo F, Ward D, Pate R. Endurance trainability of children and youth. In: Heberstreit H, Bar-Or O, eds. The Young Athlete. Oxford, UK: Blackwell Publishing Ltd; 2008:8495.

    • Search Google Scholar
    • Export Citation
  • 37.

    Pianosi PT, Liem RI, McMurray RG, Cerny FJ, Falk B, Kemper HC. Pediatric exercise testing: value and implications of peak oxygen uptake. Children. 2017;4(1):6. PubMed ID: 28125022 doi:10.3390/children4010006

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Poole DC, Jones AM. Measurement of the maximum oxygen uptake V ˙ O 2 max : V ˙ O 2 peak is no longer acceptable. J Appl Physiol. 2017;122(4):9971002. doi:10.1152/japplphysiol.01063.2016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Poole DC, Wilkerson DP, Jones AM. Validity of criteria for establishing maximal O2 uptake during ramp exercise tests. Eur J Appl Physiol. 2008;102(4):40310. PubMed ID: 17968581 doi:10.1007/s00421-007-0596-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Rowland TW. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign, IL: Human Kinetics; 2018.

  • 41.

    Rowland TW. Does peak V ˙ O 2 reflect V ˙ O 2 max in children? Evidence from supramaximal testing. Med Sci Sports Exerc. 1993;25(6):68993. PubMed ID: 8321105 doi:10.1249/00005768-199306000-00007

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Rowland TW, Cunningham LN. Oxygen uptake plateau during maximal treadmill exercise in children. Chest. 1992;101(2):4859. PubMed ID: 1735277 doi:10.1378/chest.101.2.485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Sabath RJ, White DA, Tenson KM. Exercise testing protocols. In: Rowland TW, ed. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign, IL: Human Kinetics; 2018:2340.

    • Search Google Scholar
    • Export Citation
  • 44.

    Schmidt-Nielsen K. Scaling: Why is Animal Size so Important. Cambridge, UK: Cambridge University Press; 1984.

  • 45.

    Swain DP, Wilcox JP. Effect of cadence on the economy of uphill cycling. Med Sci Sports Exerc. 1992;24(10):11237. PubMed ID: 1435159 doi:10.1249/00005768-199210000-00009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Turley KR, Rogers DM, Harper KM, Kujawa KI, Wilmore JH. Maximal treadmill versus cycle ergometry testing in children: differences, reliability and variability of responses. Pediatr Exerc Sci. 1995;7:4960. doi:10.1123/pes.7.1.49

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Turley KR, Wilmore JH. Cardiovascular responses to treadmill and cycle ergometer exercise in children and adults. J Appl Physiol. 1997;83(3):94857. PubMed ID: 9292484 doi:10.1152/jappl.1997.83.3.948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    van der Cammen-van Zijp MH, Ijsselstijn H, Takken T, et al. Exercise testing of pre-school children using the Bruce treadmill protocol: new reference values. Eur J Appl Physiol. 2010;108(2):3939. PubMed ID: 19821120 doi:10.1007/s00421-009-1236-x

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Welsman J, Armstrong N. Interpreting aerobic fitness in youth: the fallacy of ratio scaling. Pediatr Exerc Sci. 2019;31(2). doi:10.1123/pes.2018-0141

  • 50.

    Welsman JR, Armstrong N, Nevill AM, Winter EM, Kirby BJ. Scaling peak V ˙ O 2 for differences in body size. Med Sci Sports Exerc. 1996;28(2):25965. PubMed ID: 8775163 doi:10.1097/00005768-199602000-00016

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. 1997;276(5309):1226. PubMed ID: 9082983 doi:10.1126/science.276.5309.122

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Yeh MP, Gardner RM, Adams TD, Yanowitz FG, Crapo RO. “Anaerobic threshold”: problems of determination and validation. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(4):117886. PubMed ID: 6629951

    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 359 359 49
Full Text Views 53 53 1
PDF Downloads 31 31 0