The 20-m Shuttle Run: Assessment and Interpretation of Data in Relation to Youth Aerobic Fitness and Health

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Cardiorespiratory fitness (CRF) is a good summative measure of the body’s ability to perform continuous, rhythmic, dynamic, large-muscle group physical activity, and exercise. In children, CRF is meaningfully associated with health, independent of physical activity levels, and it is an important determinant of sports and athletic performance. Although gas-analyzed peak oxygen uptake is the criterion physiological measure of children’s CRF, it is not practical for population-based testing. Field testing offers a simple, cheap, practical alternative to gas analysis. The 20-m shuttle run test (20mSRT)—a progressive aerobic exercise test involving continuous running between 2 lines 20 m apart in time to audio signals—is probably the most widely used field test of CRF. This review aims to clarify the international utility of the 20mSRT by synthesizing the evidence describing measurement variability, validity, reliability, feasibility, and the interpretation of results, as well as to provide future directions for international surveillance. The authors show that the 20mSRT is an acceptable, feasible, and scalable measure of CRF and functional/exercise capacity, and that it has moderate criterion validity and high to very high reliability. The assessment is pragmatic, easily interpreted, and results are transferable to meaningful and understandable situations. The authors recommend that CRF, assessed by the 20mSRT, be considered as an international population health surveillance measure to provide additional insight into pediatric population health.

Tomkinson is with the Department of Education, Health & Behavior Studies, University of North Dakota, Grand Forks, ND, USA; and the Alliance for Research in Exercise, Nutrition and Activity (ARENA), School of Health Sciences & Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia. Lang is with the Public Health Agency of Canada, Ottawa, Ontario, Canada. Lang, Blanchard, and Tremblay are with Healthy Active Living and Obesity (HALO) Research Group, CHEO Research Institute, Ottawa, Ontario, Canada. Léger is with the Department of Kinesiology, University of Montréal, Montréal, Québec, Canada.

Tomkinson (grant.tomkinson@und.edu) is corresponding author.
  • 1.

    Adegboye AR, Anderssen SA, Froberg K, et al. Recommended aerobic fitness level for metabolic health in children and adolescents: a study of diagnostic accuracy. Br J Sports Med. 2011;45(9):722–8. PubMed ID: 20558527 doi:10.1136/bjsm.2009.068346

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Baltimore, MA: Lippincott Williams & Wilkins; 2018.

    • Search Google Scholar
    • Export Citation
  • 3.

    Anderson GS. The 1600-m run and multistage 20-m shuttle run as predictive tests of aerobic capacity in children. Pediatr Exerc Sci. 1992;4(4):312–8. doi:10.1123/pes.4.4.312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong N, Tomkinson G, Ekelund U. Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth. Br J Sports Med. 2011;45(11):849–58. PubMed ID: 21836169 doi:10.1136/bjsports-2011-090200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Armstrong N, Williams J, Balding J, Gentle P, Kirby B. The peak oxygen uptake of British children with reference to age, sex and sexual maturity. Eur J Appl Physiol Occup Physiol. 1991;62(5):369–75. PubMed ID: 1874245 doi:10.1007/BF00634975

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Artero EG, España-Romero V, Castro-Piñero J, et al. Reliability of field-based fitness tests in youth. Int J Sports Med. 2011;32(3):159–69. PubMed ID: 21165805 doi:10.1055/s-0030-1268488

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Aslan E, Müniroğlu S, Alemdaroğlu U, Karakoç B. Investigation of the performance responses of yo-yo and shuttle run tests with the treadmill run test in young soccer players. Pamukkale J Sport Sci. 2012;3(3):104–12.

    • Search Google Scholar
    • Export Citation
  • 8.

    Aubert S, Barnes JD, Adbeta C, et al. Global Matrix 3.0 of physical activity report card grades for children and youth: results and analysis from 49 countries. J Phys Act Health. 2018;15 Suppl 2:251–73. PubMed ID: 30475137 doi:10.1123/jpah.2018-0472

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Australian Sports Commission. Australia’s Winning Edge 2012–2022: Our Game Plan for Moving from World Class to World Best. Belconnen, ACT: Australian Sports Commission; 2012.

    • Search Google Scholar
    • Export Citation
  • 10.

    Australian Sports Commission. 20 m Shuttle Run Test: A Progressive Shuttle Run Test for Measuring Aerobic Fitness. Belconnen, ACT: Australian Coaching Council; 1999.

    • Search Google Scholar
    • Export Citation
  • 11.

    Aziz AR, Mukherjee S, Chia MY, Teh KC. Relationship between measured maximal oxygen uptake and aerobic endurance performance with running repeated sprint ability in young elite soccer players. J Sports Med Phys Fitness. 2007;47(4):401–7. PubMed ID: 18091678

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Aziz AR, Tan FH, Teh KC. A pilot study comparing two field tests with the treadmill run test in soccer players. J Sports Sci Med. 2005;4(2):105–12. PubMed ID: 24431967

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Barker A, Williams C, Tolfrey K, Fawkner S, Sandercock G. The BASES Expert Statement on Measurement and Interpretation of Aerobic Fitness in Young People. Leeds, UK: British Association of Sport and Exercise Sciences; 2013.

    • Search Google Scholar
    • Export Citation
  • 14.

    Barnett A, Chan LYS, Bruce IC. A preliminary study of the 20-m multistage shuttle run as a predictor of peak V˙O2 in Hong Kong Chinese students. Pediatr Exerc Sci. 1993;5(1):42–50. doi:10.1123/pes.5.1.42

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Bassett DR Jr, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32(1):70–84. PubMed ID: 10647532 doi:10.1097/00005768-200001000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Beets MW, Beighle A, Erwin HE, Huberty JL. After-school program impact on physical activity and fitness: a meta-analysis. Am J Prev Med. 2009;36(6):527–37. PubMed ID: 19362799 doi:10.1016/j.amepre.2009.01.033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43(1):1–2. PubMed ID: 19136507

  • 18.

    Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA. 1989;262(17):2395–401. PubMed ID: 2795824 doi:10.1001/jama.1989.03430170057028

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Boddy LM, Thomas NE, Fairclough SJ, et al. ROC generated thresholds for field-assessed aerobic fitness related to body size and cardiometabolic risk in schoolchildren. PLoS ONE. 2012;7(9):e45755. PubMed ID: 23029224 doi:10.1371/journal.pone.0045755

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Boreham CA, Paliczka VJ, Nichols AK. A comparison of the PWC170 and 20-MST tests of aerobic fitness in adolescent schoolchildren. J Sports Med Phys Fitness. 1990;30(1):19–23. PubMed ID: 2366530

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Brewer J, Ramsbottom R, Williams C. Multistage Fitness Test: A Progressive Shuttle-Run Test for the Prediction of Maximum Oxygen Uptake. Leeds, UK: National Coaching Foundation; 1988.

    • Search Google Scholar
    • Export Citation
  • 22.

    Buchan DS, Knox G, Jones AM, Tomkinson GR, Baker JS. Utility of international normative 20 m shuttle run values for identifying youth at increased cardiometabolic risk. J Sport Sci. 2019;37(5):507–14. doi:10.1080/02640414.2018.1511318

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Buchfuhrer MJ, Hansen JE, Robinson TE, Sue DY, Wasserman K, Whipp BJ. Optimizing the exercise protocol for cardiopulmonary assessment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(5):1558–64. PubMed ID: 6643191

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Bull FC, Gauvin L, Bauman A, Shilton T, Kohl HW 3rd, Salmon A. The Toronto charter for physical activity: a global call for action. J Phys Act Health. 2010;7(4):421–22. PubMed ID: 20683082 doi:10.1123/jpah.7.4.421

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cadenas-Sánchez C, Alcántara-Moral F, Sánchez-Delgado G, et al. Assessment of cardiorespiratory fitness in preschool children: adaptation of the 20 metres shuttle run test. Nutr Hosp. 2014;30(6):1333–43.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cadenas-Sanchez C, Intemann T, Labayen I, et al. Physical fitness reference standards for preschool children: the PREFIT project [published online ahead of print September 20, 2018]. J Sci Med Sport. doi:10.1016/j.jsams.2018.09.227

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cairney J, Hay JA, Faught BE, Léger L, Mathers B. Generalized self-efficacy and performance on the 20-metre shuttle run in children. Am J Hum Biol. 2008;20(2):132–8. PubMed ID: 17990324 doi:10.1002/(ISSN)1520-6300

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Carrel AL, Bowser J, White D, et al. Standardized childhood fitness percentiles derived from school-based testing. J Pediatr. 2012;161(1):120–4. PubMed ID: 22364851 doi:10.1016/j.jpeds.2012.01.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Castro-Piñeiro J, Ortega FB, Keating XD, González-Montesinos JL, Sjöstrom M, Ruiz JR. Percentile values for aerobic performance running/walking field tests in children aged 6 to 17 years: influence of weight status. Nutr Hosp. 2011;26(3):572–8.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Catley MJ, Tomkinson GR. Normative health-related fitness values for children: analysis of 85347 test results on 9–17-year-old Australians since 1985. Br J Sports Med. 2013;47(2):98–108. PubMed ID: 22021354 doi:10.1136/bjsports-2011-090218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cavanagh PR, Kram R. Stride length in distance running: velocity, body dimensions, and added mass effects. Med Sci Sports Exerc. 1989;21(4):467–79. PubMed ID: 2674599 doi:10.1249/00005768-198908000-00020

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Chatterjee P, Banerjee AK, Das P. Applicability of an indirect method to predict maximum oxygen uptake in young badminton players of Nepal. Int J Sports Sci Eng. 2010;4(4):209–14.

    • Search Google Scholar
    • Export Citation
  • 33.

    Chatterjee P, Banerjee AK, Das P. A prediction equation to estimate the maximum oxygen uptake of school-age girls from Kolkata, India. Malays J Med Sci. 2011;18(1):25–9. PubMed ID: 22135570

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Chatterjee P, Banerjee AK, Das P, Debnath P, Chatterjee P. Regression equations to predict V˙O2max in untrained boys and junior sprinters of Kolkata. J Exerc Sci Physiother. 2008;4(2):104.

    • Search Google Scholar
    • Export Citation
  • 35.

    Chia M, Aziz AR, Tan F, Teh KC. Examination of the performance of youth soccer players in a 20-metre shuttle run test and a treadmill run test. Adv Exerc Sports Physiol. 2005;11(3):95–101.

    • Search Google Scholar
    • Export Citation
  • 36.

    Cole TJ, Lobstein T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes. 2012;7(4):284–94. PubMed ID: 22715120 doi:10.1111/ijpo.2012.7.issue-4

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Cooley D, McNaughton L. Aerobic fitness of Tasmanian secondary school children using the 20-m shuttle run test. Percept Mot Skills. 1999;88(1):188–98. PubMed ID: 10214643 doi:10.2466/pms.1999.88.1.188

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Coombes J, Schaumberg M. Exercise capacity. In: Coombes J, Skinner T, editors. ESSA’s Student Manual for Health, Exercise and Sport Assessment. Sydney, NSW: Elsevier; 2014, pp. 351–67.

    • Search Google Scholar
    • Export Citation
  • 39.

    Cooper KH, Pollock ML, Martin RP, White SR, Linnerud AC, Jackson A. Physical fitness levels vs selected coronary risk factors: a cross-sectional study. JAMA. 1976;236(2):166–9. PubMed ID: 947012 doi:10.1001/jama.1976.03270020036021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Corbin CB. C. H. McCloy lecture: fifty years of advancements in fitness and activity research. Res Q Exerc Sport. 2012;83(1):1–11. PubMed ID: 22428406 doi:10.1080/02701367.2012.10599819

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Council of Europe. Eurofit: Handbook for the Eurofit Tests of Physical Fitness. Rome, Italy: Council of Europe; 1988.

  • 42.

    Cureton KJ, Boileau RA, Lohman TG, Misner JE. Determinants of distance running performances in children: analysis of a path model. Res Q. 1977;48(2):270–9. PubMed ID: 267964

    • Search Google Scholar
    • Export Citation
  • 43.

    De Miguel-Etayo P, Gracia-Marco L, Ortega FB, et al. Physical fitness reference standards in European children: the IDEFICS study. Int J Obes. 2014;38 Suppl 2:S57–66. doi:10.1038/ijo.2014.136

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Dickau L. Examination of Aerobic and Anaerobic Contributions to Yo-Yo Intermittent Recovery Level 1 Test Performance in Female Adolescent Soccer Players. [thesis]. Victoria, BC: University of Victoria; 2011.

    • Search Google Scholar
    • Export Citation
  • 45.

    Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651.

    • Search Google Scholar
    • Export Citation
  • 46.

    Dobosz J, Mayorga-Vega D, Viciana J. Percentile values of physical fitness levels among Polish children aged 7 to 19 years—A population-based study. Cent Eur J Public Health. 2015;23(4):340–51. PubMed ID: 26841149 doi:10.21101/cejph.a4153

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 47.

    Domone S, Mann S, Sandercock G, Wade M, Beedie C. A method by which to assess the scalability of field-based fitness tests of cardiorespiratory fitness among schoolchildren. Sports Med. 2016;46(12):1819–31. PubMed ID: 27229897 doi:10.1007/s40279-016-0553-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48.

    Falgairette G, Bedu M, Fellmann N, et al. Evaluation of physical fitness from field tests at high altitude in circumpubertal boys: comparison with laboratory data. Eur J Appl Physiol Occup Physiol. 1994;69(1):36–43. PubMed ID: 7957154 doi:10.1007/BF00867925

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Freedson PS, Cureton KJ, Heath GW. Status of field-based fitness testing in children and youth. Prev Med. 2000;31(2):S77–85. doi:10.1006/pmed.2000.0650

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Goran M, Fields DA, Hunter GR, Herd SL, Weinsier RL. Total body fat does not influence maximal aerobic capacity. Int J Obes Relat Metab Disord. 2000;24(7):841–8. PubMed ID: 10918530 doi:10.1038/sj.ijo.0801241

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Gulías-González R, Sánchez-López M, Olivas-Bravo Á, Solera-Martínez M, Martínez-Vizcaíno V. Physical fitness in Spanish schoolchildren aged 6–12 years: reference values of the battery EUROFIT and associated cardiovascular risk. J Sch Health. 2014;84(10):625–35. doi:10.1111/josh.2014.84.issue-10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Hallal PC, Andersen LB, Bull FC, et al. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57. PubMed ID: 22818937 doi:10.1016/S0140-6736(12)60646-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Hamlin MJ, Fraser M, Lizamore CA, Draper N, Shearman JP, Kimber NE. Measurement of cardiorespiratory fitness in children from two commonly used field tests after accounting for body fatness and maturity. J Hum Kinet. 2014;40:83–92. PubMed ID: 25031676 doi:10.2478/hukin-2014-0010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Haugen T, Høigaard R, Seiler S. Normative data of BMI and physical fitness in a Norwegian sample of early adolescents. Scand J Public Health. 2014;42(1):67–73. PubMed ID: 24043396 doi:10.1177/1403494813504502

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Hemmings S, Nevill A, Nevill M. Validation of the 20-m multi-stage shuttle test as predictor of peak oxygen uptake in young elite sports performers. J Sports Sci. 2003;21(4):277.

    • Search Google Scholar
    • Export Citation
  • 56.

    Hobold E, Pires-Lopes V, Gómez-Campos R, et al. Reference standards to assess physical fitness of children and adolescents of Brazil: an approach to the students of the Lake Itaipú region—Brazil. PeerJ. 2017;5:e4032. PubMed ID: 29204319 doi:10.7717/peerj.4032

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Hopkins WG. Measures of reliability in sports medicine and science. Sports Med. 2000;30(1):1–15. PubMed ID: 10907753 doi:10.2165/00007256-200030010-00001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Institute of Medicine. Fitness Measures and Health Outcomes in Youth. Washington, DC: The National Academies Press, 2012.

  • 59.

    International Society for Physical Activity and Health. The Bangkok Declaration on physical activity for global health and sustainable development. Br J Sports Med. 2017;51(19):1389–91. doi:10.1136/bjsports-2017-098063

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Kamon E, Pandolf KB. Maximal aerobic power during laddermill climbing, uphill running, and cycling. J Appl Physiol. 1972;32(4):467–73. PubMed ID: 5026493 doi:10.1152/jappl.1972.32.4.467

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61.

    Kemper HCG, Van Mechelen W. Physical fitness testing of children: a European perspective. Pediatr Exerc Sci. 1996;8(3):201–14. doi:10.1123/pes.8.3.201

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 62.

    Lang JJ, Belanger K, Poitras V, Janssen I, Tomkinson GR, Tremblay MS. Systematic review of the relationship between 20 m shuttle run performance and health indicators among children and youth. J Sci Med Sport. 2018;21(4):383–97. PubMed ID: 28847618 doi:10.1016/j.jsams.2017.08.002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 63.

    Lang JJ, Tomkinson GR, Janssen I, et al. Making a case for cardiorespiratory fitness surveillance among children and youth. Exerc Sport Sci Rev. 2018;46(2):66–75. PubMed ID: 29346159

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64.

    Lang JJ, Tremblay MS, Léger L, Olds T, Tomkinson GR. International variability in 20 m shuttle run performance in children and youth: who are the fittest from a 50-country comparison? A systematic literature review with pooling of aggregate results. Br J Sports Med. 2018;52(4):276. PubMed ID: 27650256 doi:10.1136/bjsports-2016-096224

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Lang JJ, Tremblay MS, Ortega FB, Ruiz JR, Tomkinson GR. Review of criterion-referenced standards for cardiorespiratory fitness: what percentage of 1 142 026 international children and youth are apparently healthy? Br J Sports Med [cited 2017 Mar 2] doi:10.1136/bjsports-2016-096955.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Lang JJ, Wolfe Phillips E, Orpana HM, et al. Field-based measurement of cardiorespiratory fitness to evaluate physical activity interventions. Bull World Health Organ. 2018;96(11):794–6. PubMed ID: 30455535 doi:10.2471/BLT.18.213728

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Larouche R, Saunders TJ, Faulkner G, Colley R, Tremblay M. Associations between active school transport and physical activity, body composition, and cardiovascular fitness: a systematic review of 68 studies. J Phys Act Health. 2014;11(1):206–27. PubMed ID: 23250273 doi:10.1123/jpah.2011-0345

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Léger L,Lambert J, Goulet A, Rowan C, Dinelle Y. Aerobic capacity of 6 to 17-year-old Quebecois—20 meter shuttle run test with 1 minute stages [Article in French]. Can J Appl Sport Sci. 1984;9(2):64–9.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Léger LA, Lambert J. A maximal multistage 20 m shuttle run test to predict V˙O2max. Eur J Appl Physiol. 1982;49(1):1–12. doi:10.1007/BF00428958

  • 70.

    Léger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 meter shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101. doi:10.1080/02640418808729800

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 71.

    LeMura LM, von Duvillard SP, Cohen SL, et al. Treadmill and cycle ergometry testing in 5- to 6-year-old children. Eur J Appl Physiol. 2001;85(5):472–8. PubMed ID: 11606017 doi:10.1007/s004210100461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Liu NY, Plowman SA, Looney MA. The reliability and validity of the 20-meter shuttle test in American students 12 to 15 years old. Res Q Exerc Sport. 1992;63(4):360–5. PubMed ID: 1439160 doi:10.1080/02701367.1992.10608757

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Lobelo F, Pate RR, Dowda M, Liese AD, Ruiz JR. Validity of cardiorespiratory fitness criterion-referenced standards for adolescents. Med Sci Sports Exerc. 2009;41(6):1222–9. PubMed ID: 19461545 doi:10.1249/MSS.0b013e318195d491

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Lobstein T, Baur L, Uauy R, IASO International Obesity TaskForce. Obesity in children and young people: a crisis in public health. Obes Rev. 2004;5 Suppl 1:S4–104. doi:10.1111/obr.2004.5.issue-s1

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    Longmuir PE, Colley RC, Wherley VA, Tremblay MS. Canadian Society for Exercise Physiology position stand: benefit and risk for promoting childhood physical activity. Appl Physiol Nutr Metab. 2014;39(11):1271–9. PubMed ID: 25135072 doi:10.1139/apnm-2014-0074

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Mahar MT, Crotts DJ, Mccammon MR, Rowe DA. Validity of the PWC170 and PACER tests as measures of aerobic capacity in 12- to 14-year old girls. Med Sci Sports Exerc. 2002;34(5 Suppl 1):S294. doi:10.1097/00005768-200205001-01659

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 77.

    Mahar MT, Guerieri AM, Hanna MS, Kemble CD. Estimation of aerobic fitness from 20-m multistage shuttle run test performance. Am J Prev Med. 2011;41(4 Suppl 2):S117–23. doi:10.1016/j.amepre.2011.07.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Mahar MT, Welk GJ, Rowe DA. Estimation of aerobic fitness from PACER performance with and without body mass index. Meas Phys Educ Exerc Sci. 2018;22(3):239–49. doi:10.1080/1091367X.2018.1427590

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Mahar MT, Welk GJ, Rowe DA, Crotts DJ, McIver KL. Development and validation of a regression model to estimate V˙O2peak from PACER 20-m shuttle run performance. J Phys Act Health. 2006;3 Suppl 2:S34–46. doi:10.1123/jpah.3.s2.s34

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    Mahoney C. 20-MST and PWC170 validity in non-Caucasian children in the UK. Br J Sports Med. 1992;26(1):45–7. PubMed ID: 1600454 doi:10.1136/bjsm.26.1.45

  • 81.

    Mahoney CA, Boreham CAG. Validity and reliability of fitness testing in primary school children. In: Williams T, Almond L, Sparkes A, editors. Sport and Physical Activity: Moving Towards Excellence. London, UK: E & FN Spon; 1992:429–37.

    • Search Google Scholar
    • Export Citation
  • 82.

    Massicotte D. Partial curl-ups, push ups and multistage 20 meter shuttle run, national norms for 6 to 17 year-olds. Final report, Project No. 240-0010-88/89, submitted to Canadian Association for Health, Physical Education and Recreation (CAHPER) and Fitness and Amateur Sport Canada. Montréal, Canada: University of Quebec at Montréal; 1990.

    • Search Google Scholar
    • Export Citation
  • 83.

    Matsuzaka A, Takahashi Y, Yamazoe M, et al. Validity of the multistage 20-m shuttle-run test for Japanese children, adolescents, and adults. Pediatr Exerc Sci. 2004;16(2):113–25. doi:10.1123/pes.16.2.113

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Mayorga-Vega D, Aguilar-Soto P, Viciana J. Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: a meta-analysis. J Sports Sci Med. 2015;14(3):536–47. PubMed ID: 26336340

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Mayorga-Vega D, Bocanegra-Parrilla R, Ornelas M, Viciana J. Criterion-related validity of the distance- and time-based walk/run field tests for estimating cardiorespiratory fitness: a systematic review and meta-analysis. PLoS ONE. 2016;11(3):e0151671. PubMed ID: 26987118 doi:10.1371/journal.pone.0151671

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    McIver K, Pfeiffer KA, Mahar MT, Pate RR. Associations between peak V˙O2 and field tests of cardiorespiratory fitness in adolescent males. Med Sci Sports Exerc. 2004;36(5):S134.

    • Search Google Scholar
    • Export Citation
  • 87.

    McVeigh SK, Payne AC, Scott S. The reliability and validity of the 20-meter shuttle test as a predictor of peak oxygen uptake in Edinburgh school children, age 13 to 14 years. Pediatr Exerc Sci. 1995;7(1):69–79. doi:10.1123/pes.7.1.69

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Mesa JL, Ruiz JR, Ortega FB, et al. Aerobic physical fitness in relation to blood lipids and fasting glycaemia in adolescents: influence of weight status. Nutr Metab Cardiovasc Dis. 2006;16(4):285–93. PubMed ID: 16679221 doi:10.1016/j.numecd.2006.02.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Midgley AW, Bentley DJ, Luttikholt H, McNaughton LR, Millet GP. Challenging a dogma of exercise physiology: does an incremental exercise test for valid V˙O2max determination really need to last between 8 and 12 minutes? Sports Med. 2008;38(6):441–7. PubMed ID: 18489192 doi:10.2165/00007256-200838060-00001

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 90.

    Mora-Gonzalez J, Cadenas-Sanchez C, Martinez-Tellez B, et al. Estimating V˙O2max in children aged 5–6 years through the preschool-adapted 20-m shuttle-run test (PREFIT). Eur J Appl Physiol. 2017;117(11):2295–307. PubMed ID: 28932901 doi:10.1007/s00421-017-3717-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 91.

    Moreira C, Santos R, Ruiz JR, et al. Comparison of different V˙O2max equations in the ability to discriminate the metabolic risk in Portuguese adolescents. J Sci Med Sport. 2011;14(1):79–84. PubMed ID: 20727823 doi:10.1016/j.jsams.2010.07.003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 92.

    Mountjoy M, Andersen LB, Armstrong N, et al. International Olympic Committee consensus statement on the health and fitness of young people through physical activity and sport. Br J Sports Med. 2011;45(11):839–48. PubMed ID: 21836168 doi:10.1136/bjsports-2011-090228

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Mura G, Rocha NB, Helmich I, et al. Physical activity interventions in schools for improving lifestyle in European countries. Clin Pract Epidemiol Ment Health. 2015;11 Suppl 1 (M5):S77–101. doi:10.2174/1745017901511010077

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 94.

    Olds TS, Ridley K, Tomkinson GR. Declines in aerobic fitness: are they only due to increasing fatness? Med Sport Sci. 2007;50:226–40. PubMed ID: 17387261 doi:10.1159/000101394

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Ortega FB, Artero EG, Ruiz JR, et al. Physical fitness levels among European adolescents: the HELENA study. Br J Sports Med. 2011;45(1):20–9. PubMed ID: 19700434 doi:10.1136/bjsm.2009.062679

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Ortega FB, Artero EG, Ruiz JR, et al. Reliability of health-related physical fitness tests in European adolescents. The HELENA Study. Int J Obes. 2008;32 Suppl 5:S49–57. doi:10.1038/ijo.2008.183

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Park RJ. Measurement of Physical Fitness: A Historical Perspective. ODPHP Monograph Series. Washington, DC: US Department of Health and Human Services; Public Health Service; 1988.

    • Search Google Scholar
    • Export Citation
  • 98.

    Pate RR. The case for large-scale physical fitness testing in American youth. Pediatr Exerc Sci. 1989;1(4):290–4. doi:10.1123/pes.1.4.290

  • 99.

    Pireva A, Selimi M, Gontarev S, Georgi G. Association between aerobic fitness and high blood pressure in adolescents in Macedonia evidence for criterion-referenced cut-points. J Phys Educ Sport. 2018;18(2):853–61.

    • Search Google Scholar
    • Export Citation
  • 100.

    Pitetti KH, Fernhall B, Figoni S. Comparing two regression formulas that predict V˙O2 peak using the 20-m shuttle run for children and adolescents. Pediatr Exerc Sci. 2002;14(2):125–34. doi:10.1123/pes.14.2.125

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 101.

    Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationship between objectively measured physical activity and health indicators in school-aged children and youth. Appl Physiol Nutr Metab. 2016;41(6 Suppl 3):S197–239. doi:10.1139/apnm-2015-0663

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 102.

    Quinart S, Mougin F, Simon-Rigaud ML, Nicolet-Guénat M, Nègre V, Regnard J. Evaluation of cardiorespiratory fitness using three field tests in obese adolescents: validity, sensitivity and prediction of peak V˙O2. J Sci Med Sport. 2014;17(5):521–5. PubMed ID: 23948247 doi:10.1016/j.jsams.2013.07.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 103.

    Ramírez-Vélez R, Palacios-López A, Prieto-Benavides DH, et al. Normative reference values for the 20 m shuttle-run test in a population-based sample of school-aged youth in Bogota, Colombia: the FUPRECOL study. Am J Hum Biol. 2017;29(1):e22902. doi:10.1002/ajhb.22902

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 104.

    Riddoch CJ. The Northern Ireland Health and Fitness Survey—1989: The Fitness, Physical Activity, Attitudes and Lifestyles of Northern Ireland Post-Primary Schoolchildren. Belfast, Northern Ireland: The Queen’s University of Belfast; 1990.

    • Search Google Scholar
    • Export Citation
  • 105.

    Ross R, Blair SN, Arena R, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign. Circulation. 2016;134(24):e653–99. PubMed ID: 27881567 doi:10.1161/CIR.0000000000000461

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Ruiz JR, Castro-Piñero J, Artero EG, et al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med. 2009;43(12):909–23. PubMed ID: 19158130 doi:10.1136/bjsm.2008.056499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Ruiz JR, Castro-Piñero J, España-Romero V, et al. Field-based fitness assessment in young people: the ALPHA health-related fitness test battery for children and adolescents. Br J Sports Med. 2011;45(6):518–24. PubMed ID: 20961915 doi:10.1136/bjsm.2010.075341

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Ruiz JR, Cavero-Redondo I, Ortega FB, Welk GJ, Andersen LB, Martinez-Vizcaino V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis. Br J Sports Med. 2016;50(23):1451–8. PubMed ID: 27670254 doi:10.1136/bjsports-2015-095903

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Ruiz JR, Huybrechts I, Cuenca-Gracía M, et al. Cardiorespiratory fitness and ideal cardiovascular health in European adolescents. Heart. 2015;101(10):766–73. PubMed ID: 25489050 doi:10.1136/heartjnl-2014-306750

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 110.

    Ruiz JR, Ortega FB, Rizzo NS, et al. High cardiovascular fitness is associated with low metabolic risk score in children: the European Youth Heart Study. Pediatr Res. 2007;61(3):350–5. PubMed ID: 17314696 doi:10.1203/pdr.0b013e318030d1bd

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 111.

    Ruiz JR, Silva G, Oliveira N, Ribeiro JC, Oliveira JF, Mota J. Criterion-related validity of the 20-m shuttle run test in youths aged 13–19 years. J Sports Sci. 2009;27(9):899–906. PubMed ID: 19629839 doi:10.1080/02640410902902835

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Saavedra JM, Escalante Y, Garcia-Hermoso A. Improvement of aerobic fitness in obese children: a meta-analysis. Int J Pediatr Obes. 2011;6(3–4):169–77. PubMed ID: 21923300 doi:10.3109/17477166.2011.579975

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 113.

    Sandercock G, Jones B. Is it time to give population health surveillance a late fitness test? [cited 2018 Feb 2]. Br J Sports Med. doi:10.1136/bjsports-2017-098659

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 114.

    Sandercock G, Voss C, Cohen D, Taylor M, Stasinopoulos DM. Centile curves and normative values for the twenty metre shuttle-run test in English schoolchildren. J Sports Sci. 2012;30(7):679–87. PubMed ID: 22339646 doi:10.1080/02640414.2012.660185

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 115.

    Santos R, Mota J, Santos DA, Silva AM, Baptista F, Sardinha LB. Physical fitness percentiles for Portuguese children and adolescents aged 10–18 years. J Sports Sci. 2014;32(16):1510–8. PubMed ID: 24825623 doi:10.1080/02640414.2014.906046

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 116.

    Sauka M, Priedite IS, Artjuhova L, et al. Physical fitness in northern European youth: reference values from the Latvian Physical Health in Youth Study. Scand J Public Health. 2011;39(1):35–43. PubMed ID: 20699349 doi:10.1177/1403494810380298

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 117.

    Secchi JD, García GC, España-Romero V, Castro-Piñero J. Physical fitness and future cardiovascular risk in argentine children and adolescents: an introduction to the ALPHA test battery. Arch Argent Pediatr. 2014;112(2):132–40. PubMed ID: 24584787

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 118.

    Silva DA, Tremblay M, Pelegrini A, Dos Santos Silva RJ, Cabral de Oliveira AC, Petroski EL. Association between aerobic fitness and high blood pressure in adolescents in Brazil: evidence for criterion-referenced cut-points. Pediatr Exerc Sci. 2016;28(2):312–20. PubMed ID: 26731016 doi:10.1123/pes.2015-0172

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 119.

    Silva DAS, Lang JJ, Barnes JD, Tomkinson GR, Tremblay MS. Cardiorespiratory fitness in children: evidence for criterion-referenced cut-points. PLoS ONE. 2018;13(8):e0201048. PubMed ID: 30067796 doi:10.1371/journal.pone.0201048

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 120.

    Silva G, Aires L, Mota J, Oliveira J, Ribeiro JC. Normative and criterion-related standards for shuttle run performance in youth. Pediatr Exerc Sci. 2012;24(2):157–69. PubMed ID: 22728409 doi:10.1123/pes.24.2.157

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 121.

    Suminski RR, Ryan ND, Poston CS, Jackson AS. Measuring aerobic fitness of Hispanic youth 10 to 12 years of age. Int J Sports Med. 2004;25(1):61–7. PubMed ID: 14750015 doi:10.1055/s-2003-45230

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 122.

    Sun C, Pezic A, Tikellis G, et al. Effects of school-based interventions for direct delivery of physical activity on fitness and cardiometabolic markers in children and adolescents: a systematic review of randomized controlled trials. Obes Rev. 2013;14(10):818–38. PubMed ID: 23734662 doi:10.1111/obr.2013.14.issue-10

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 123.

    Tambalis KD, Panagiotakos DB, Arnaoutis G, Sidossis LS. Endurance, explosive power, and muscle strength in relation to body mass index and physical fitness in Greek children aged 7–10 years. Pediatr Exerc Sci. 2013;25(3):394–406. PubMed ID: 23877385 doi:10.1123/pes.25.3.394

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 124.

    Tambalis KD, Panagiotakos DB, Psarra G, et al. Physical fitness normative values for 6–18-year-old Greek boys and girls, using the empirical distribution and the lambda, mu, and sigma statistical method. Eur J Sport Sci. 2016;16(6):736–46. PubMed ID: 26402318 doi:10.1080/17461391.2015.1088577

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 125.

    The Cooper Institute. FitnessGram Administration Manual: The Journey to MyHealthyZone. 5th ed. Champaign, IL: Human Kinetics; 2017.

  • 126.

    Tomkinson GR, Carver KD, Atkinson F, et al. European normative values for physical fitness in children and adolescents aged 9–17 years: results from 2 779 165 Eurofit performances representing 30 countries. Br J Sports Med. 2018;52(22):1445–56. PubMed ID: 29191931 doi:10.1136/bjsports-2017-098253

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 127.

    Tomkinson GR, Lang JJ, Tremblay MS. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high- and upper-middle-income countries between 1981 and 2014 [published online ahead of print October 30, 2017]. Br J Sports Med. doi:10.1136/bjsports-2017-097982

    • Search Google Scholar
    • Export Citation
  • 128.

    Tomkinson GR, Lang JJ, Tremblay MS, et al. International normative 20 m shuttle run values from 1, 142, 026 children and youth representing 50 countries. Br J Sports Med. 2017;51(21):1545–54. PubMed ID: 27208067 doi:10.1136/bjsports-2016-095987

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 129.

    Tomkinson GR, Léger LA, Olds TS, Cazorla G. Secular trends in the performance of children and adolescents (1980–2000): an analysis of 55 studies of the 20 m shuttle run in 11 countries. Sports Med. 2003;33(4):285–300. PubMed ID: 12688827 doi:10.2165/00007256-200333040-00003

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 130.

    Tremblay MS, Barnes JD, González SA, et al. Global Matrix 2.0: report card grades on the physical activity of children and youth comparing 38 countries. J Phys Act Health. 2016;13(11 Suppl 2):S343–66. doi:10.1123/jpah.2016-0594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 131.

    Tsiaras V, Zafeiridis A, Dipla K, Patras K, Georgoulis A, Kellis S. Prediction of peak oxygen uptake from a maximal treadmill test in 12-to 18-year-old active male adolescents. Pediatr Exerc Sci. 2010;22(4):624–37. PubMed ID: 21242610 doi:10.1123/pes.22.4.624

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 132.

    Turley KR, Wilmore JH. Cardiovascular responses to treadmill and cycle ergometer exercise in children and adults. J Appl Physiol. 1997;83(3):948–57. PubMed ID: 9292484 doi:10.1152/jappl.1997.83.3.948

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 133.

    United Nations. Political Declaration of the High-Level Meeting of the General Assembly on the Prevention and Control of Non-communicable Diseases. New York, NY: United Nations, Department of Economic and Social Affairs; 2012.

    • Search Google Scholar
    • Export Citation
  • 134.

    United Nations. Transforming our World: The 2030 Agenda for Sustainable Development. New York, NY: United Nations, Department of Economic and Social Affairs; 2015.

    • Search Google Scholar
    • Export Citation
  • 135.

    US Department of Health and Human Services. 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: US Department of Health and Human Services; 2018.

    • Search Google Scholar
    • Export Citation
  • 136.

    Vanhelst J, Labreuche J, Béghin L, et al. Physical fitness reference standards in French youth: the BOUGE program. J Strength Cond Res. 2017;31(6):1709–18. PubMed ID: 28538324 doi:10.1519/JSC.0000000000001640

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 137.

    van Mechelen W, Hlobil H, Kemper HC. Validation of two running tests as estimates of maximal aerobic power in children. Eur J Appl Physiol Occup Physiol. 1986;55(5):503–6. PubMed ID: 3769907 doi:10.1007/BF00421645

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 138.

    Van Praagh E, Bedu M, Falgairette G, Fellmann N, Coudert J. Comparison of direct and indirect V˙O2max in 7- and 12-year-old children: a field test validation study [Article in French]. Sci Sports. 1988;3(4):327–32. doi:10.1016/S0765-1597(88)80034-0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 139.

    Van Praagh E, Falgairette G, Bedu M, Fellmann N, Coudert J. Laboratory and field tests in 7-year-old boys. In: Oseid S, Carlsen K-H, editors. Children and Exercise XIII. Champaign, IL: Human Kinetics; 1989.

    • Search Google Scholar
    • Export Citation
  • 140.

    Varness T, Carrel AL, Eickhoff JC, Allen DB. Reliable prediction of insulin resistance by a school-based fitness test in middle-school children. Int J Pediatr Endocrinol. 2009;2009(1):487804. doi:10.1186/1687-9856-2009-487804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 141.

    Verschuren O, Takken T, Ketelaar M, Gorter JW, Helders PJ. Reliability and validity of data for 2 newly developed shuttle run tests in children with cerebral palsy. Phys Ther. 2006;86(8):1107–17. PubMed ID: 16879044

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 142.

    Verschuren O, Zwinkels M, Ketelaar M, Reijnders-van Son F, Takken T. Reproducibility and validity of the 10-meter shuttle ride test in wheelchair-using children and adolescents with cerebral palsy. Phys Ther. 2013;93(7):967–74. PubMed ID: 23580630 doi:10.2522/ptj.20120513

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 143.

    Voss C, Sandercock G. Does the twenty meter shuttle-run test elicit maximal effort in 11- to 16-year-olds? Pediatr Exerc Sci. 2009;21(1):55–62. PubMed ID: 19411711 doi:10.1123/pes.21.1.55

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 144.

    Welk GJ, Laurson KR, Eisenmann JC, Cureton KJ. Development of youth aerobic capacity standards using receiver operating characteristic curves. Am J Prev Med. 2011;41(4 Suppl 2):S111–16. doi:10.1016/j.amepre.2011.07.007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 145.

    Wilkinson RG, Pickett KE. Income inequality and population health: a review and explanation of the evidence. Soc Sci Med. 2006;62(7):1768–84. PubMed ID: 16226363 doi:10.1016/j.socscimed.2005.08.036

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 146.

    World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World. Geneva, Switzerland: World Health Organization; 2018.

    • Search Google Scholar
    • Export Citation
  • 147.

    World Health Organization. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: World Health Organization; 2010.

    • Search Google Scholar
    • Export Citation
  • 148.

    World Health Organization. Noncommunicable Diseases Progress Monitor, 2017. Geneva, Switzerland: World Health Organization; 2017.

  • 149.

    Zamparo P, Zadro I, Lazzer S, Beato M, Sepulcri L. Energetics of shuttle runs: the effects of distance and change of direction. Int J Sports Physiol Perform. 2014;9(6):1033–9. PubMed ID: 24700201 doi:10.1123/ijspp.2013-0258

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 150.

    Zeng N, Gao Z. Exergaming and obesity in youth: current perspectives. Int J Gen Med. 2016;9:275–84. PubMed ID: 27536158 doi:10.2147/IJGM

All Time Past Year Past 30 Days
Abstract Views 456 456 96
Full Text Views 81 81 2
PDF Downloads 24 24 0