Exercise Science and Child Health: A Tale of Many Journeys

in Pediatric Exercise Science
Restricted access

Purchase article

USD  $24.95

Student 1 year subscription

USD  $68.00

1 year subscription

USD  $90.00

Student 2 year subscription

USD  $129.00

2 year subscription

USD  $168.00

Children are the most naturally physically active human beings; reduced physical activity is a cardinal sign of childhood disease, and exercise testing provides mechanistic insights into health and disease that are often hidden when the child is at rest. The physical inactivity epidemic is leading to increased disease risk in children and, eventually, in adults in unprecedented ways. Cardiopulmonary exercise testing (CPET) biomarkers are used to assess disease severity, progress, and response to therapy across an expanding range of childhood diseases and conditions. There is mounting data that fitness in children tracks across the life span and may prove to be an early, modifiable indicator of cardiovascular disease risk later in life. Despite these factors, CPET has failed to fulfill its promise in child health research and clinical practice. A major barrier to more accurate and effective clinical use of CPET in children is that data analytics and testing protocols have failed to keep pace with enabling technologies and computing capacity. As a consequence, biomarkers of fitness and physical activity have yet to be widely incorporated into translational research and clinical practice in child health. In this review, the author re-examines some of the long-held assumptions that mold CPET in children. In particular, the author suggests that current testing strategies that rely predominantly on maximal exercise may, inadvertently, obfuscate novel and clinically useful insights that can be gleaned from more comprehensive data analytics. New pathways to discovery may emanate from the simple recognition that the physiological journey that human beings undertake in response to the challenge of exercise may be far more important than the elusive destination of maximal or peak effort.

The author is with the Department of Pediatrics and the Institute of Clinical and Translational Research at the University of California, Irvine, Irvine, CA.

Cooper (dcooper@uci.edu) is corresponding author.
  • 1.

    Akber A, Portale AA, Johansen KL. Pedometer-assessed physical activity in children and young adults with CKD. Clin J Am Soc Nephrol. 2012;7:72026. PubMed ID: 22422539 doi:10.2215/CJN.06330611

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Alvarado AM, Ward KM, Muntz DS, et al. Heart rate recovery is impaired after maximal exercise testing in children with sickle cell anemia. J Pediatr. 2015;166:38993.e1. PubMed ID: 25477159 doi:10.1016/j.jpeds.2014.10.064

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Armon Y, Cooper DM, Zanconato S. Maturation of ventilatory responses to 1-minute exercise. Pediatr Res. 1991;29:36268. PubMed ID: 1906595 doi:10.1203/00006450-199104000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong N, Barker AR. Oxygen uptake kinetics in children and adolescents: a review. Pediatr Exerc Sci. 2009;21:13047. PubMed ID: 19556620 doi:10.1123/pes.21.2.130

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Ashish N, Bamman MM, Cerny FJ, et al. The clinical translation gap in child health exercise research: a call for disruptive innovation. Clin Transl Sci. 2015;8:6776. PubMed ID: 25109386 doi:10.1111/cts.12194

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Åstrand PO, Rhyming I. A nomogram for calculation of aerobic capacity from pulse rate during sub-maximal work. J Appl Physiol. 1954;7:21821. PubMed ID: 13211501 doi:10.1152/jappl.1954.7.2.218

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7.

    Bailey RC, Olson J, Pepper SL, Barstow TJ, Porszsasz J, Cooper DM. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27:103341. PubMed ID: 7564970 doi:10.1249/00005768-199507000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bansal T, Haji GS, Rossiter HB, Polkey MI, Hull JH. Exercise ventilatory irregularity can be quantified by approximate entropy to detect breathing pattern disorder. Respir Physiol Neurobiol. 2018;255:16. PubMed ID: 29730423 doi:10.1016/j.resp.2018.05.002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Barker AR, Trebilcock E, Breese B, Jones AM, Armstrong N. The effect of priming exercise on O2 uptake kinetics, muscle O2 delivery and utilization, muscle activity, and exercise tolerance in boys. Appl Physiol Nutr Metab. 2014;39:30817. PubMed ID: 24552371 doi:10.1139/apnm-2013-0174

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Barker DJ, Osmond C, Forsén TJ, Thornburg KL, Kajantie E, Eriksson JG. Foetal and childhood growth and asthma in adult life. Acta Paediatr. 2013;102:73238. PubMed ID: 23560734 doi:10.1111/apa.12257

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Beltrame T, Amelard R, Villar R, Shafiee MJ, Wong A, Hughson RL. Estimating oxygen uptake and energy expenditure during treadmill walking by neural network analysis of easy-to-obtain inputs. J Appl Physiol. 2016;121:122633. PubMed ID: 27687561 doi:10.1152/japplphysiol.00600.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Berman N, Bailey RC, Barstow TJ, Cooper DM. Spectral and bout detection analysis of physical activity patterns in healthy, perpubertal boys and girls. Am J Hum Biol. 1998;10:28997. PubMed ID: 28561394 doi:10.1002/(SICI)1520-6300(1998)10:3<289::AID-AJHB4>3.0.CO;2-E

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Blaisdell CJ, Weinmann GG. NHLBI viewpoint: lung health and disease prevention research starting in childhood. Pediatr Pulmonol. 2015;50:6046. PubMed ID: 25857257 doi:10.1002/ppul.23198

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Blanchfield AW, Hardy J, De Morree HM, Staiano W, Marcora SM. Talking yourself out of exhaustion. Med Sci Sports Exerc. 2014;46:9981007. PubMed ID: 24121242 doi:10.1249/MSS.0000000000000184

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Bohr AH, Fuhlbrigge RC, Pedersen FK, de Ferranti SD, Müller K. Premature subclinical atherosclerosis in children and young adults with juvenile idiopathic arthritis. A review considering preventive measures. Pediatr Rheumatol Online J. 2016;14:3. PubMed ID: 26738563 doi:10.1186/s12969-015-0061-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol. 2012;2:1143211. PubMed ID: 23798298

  • 17.

    Breithaupt P, Adamo KB, Colley RC. The HALO submaximal treadmill protocol to measure cardiorespiratory fitness in obese children and youth: a proof of principle study. Appl Physiol Nutr Metab. 2012;37:30814. PubMed ID: 22452609 doi:10.1139/h2012-003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18.

    Briggs AM, Cross MJ, Hoy DG, et al. Musculoskeletal health conditions represent a global threat to healthy aging: a report for the 2015 World Health Organization world report on ageing and health. Gerontologist. 2016;56(suppl 2):24355. PubMed ID: 26994264 doi:10.1093/geront/gnw002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Caughey MC, Loehr LR, Key NS, et al. Sickle cell trait and incident ischemic stroke in the Atherosclerosis Risk in Communities study. Stroke. 2014;45:28637. PubMed ID: 25139879 doi:10.1161/STROKEAHA.114.006110

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Cayres SU, de Lira FS, Machado-Rodrigues AM, Freitas Junior IF, Barbosa MF, Fernandes RA. The mediating role of physical inactivity on the relationship between inflammation and artery thickness in prepubertal adolescents. J Pediatr. 2015;166:9249. PubMed ID: 25661410 doi:10.1016/j.jpeds.2014.12.057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Chang JS, Kim EY, Jung D, et al. Altered cardiorespiratory coupling in young male adults with excessive online gaming. Biol Psychol. 2015;110:15966. PubMed ID: 26253868 doi:10.1016/j.biopsycho.2015.07.016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Chowdhury AK, Tjondronegoro D, Chandran V, Trost SG. Ensemble methods for classification of physical activities from wrist accelerometry. Med Sci Sports Exerc. 2017;49:196573. PubMed ID: 28419025 doi:10.1249/MSS.0000000000001291

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Chu P, Pandya A, Salomon JA, Goldie SJ, Hunink MG. Comparative effectiveness of personalized lifestyle management strategies for cardiovascular disease risk reduction. J Am Heart Assoc. 2016;4:e002737. PubMed ID: 27025969

    • Search Google Scholar
    • Export Citation
  • 24.

    Chung A, Backholer K, Wong E, Palermo C, Keating C, Peeters A. Trends in child and adolescent obesity prevalence in economically advanced countries according to socioeconomic position: a systematic review. Obes Rev. 2015;17:27695. PubMed ID: 26693831 doi:10.1111/obr.12360

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Cominato L, Di Biagio GF, Lellis D, Franco RR, Mancini MC, de Melo ME. Obesity prevention: strategies and challenges in Latin America. Curr Obes Rep. 2018;7:97104. PubMed ID: 29737493 doi:10.1007/s13679-018-0311-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Cooper DM, Kaplan MR, Baumgarten L, Weiler-Ravell D, Whipp BJ, Wasserman K. Coupling of ventilation and CO2 production during exercise in children. Pediatr Res. 1987;21:56872. PubMed ID: 3110725 doi:10.1203/00006450-198706000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Cooper DM, Leu SY, Galassetti P, Radom-Aizik S. Dynamic interactions of gas exchange, body mass, and progressive exercise in children. Med Sci Sports Exerc. 2014;46:87786. PubMed ID: 24091992 doi:10.1249/MSS.0000000000000180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cooper DM, Radom-Aizik S, Schwindt C, Zaldivar F Jr. Dangerous exercise: lessons learned from dysregulated inflammatory responses to physical activity. J Appl Physiol. 2007;103:7009. PubMed ID: 17495117 doi:10.1152/japplphysiol.00225.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Cooper DM, Weiler-Ravell D, Whipp BJ, Wasserman K. Aerobic parameters of exercise as a function of body size during growth in children. J Appl Physiol. 1984;56:62834. PubMed ID: 6706770 doi:10.1152/jappl.1984.56.3.628

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Costa M, Goldberger A. Generalized multiscale entropy analysis: application to quantifying the complex volatility of human heartbeat time series. Entropy. 2015;17:1197203. PubMed ID: 27099455 doi:10.3390/e17031197

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cristi-Montero C, Chillón P, Labayen I, et al. Cardiometabolic risk through an integrative classification combining physical activity and sedentary behavior in European adolescents: HELENA study. J Sport Heal Sci. 2019;8:5562. PubMed ID: 30719384 doi:10.1016/j.jshs.2018.03.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Cunningham SA, Kramer MR, Narayan KM. Incidence of childhood obesity in the United States. N Engl J Med. 2014;370:40311. PubMed ID: 24476431 doi:10.1056/NEJMoa1309753

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Dahhan A. Coronary artery ectasia in atherosclerotic coronary artery disease, inflammatory disorders, and sickle cell disease. Cardiovasc Ther. 2015;33:7988. PubMed ID: 25677643 doi:10.1111/1755-5922.12106

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ. The maximally attainable VO2 during exercise in humans: the peak vs. maximum issue. J Appl Physiol. 2003;95:19017. PubMed ID: 12857763 doi:10.1152/japplphysiol.00024.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Dodge JA. A millennial view of cystic fibrosis. Dev period Med. 2015;19:913. PubMed ID: 26003065

  • 36.

    Ekkekakis P, Parfitt G, Petruzzello SJ. The pleasure and displeasure people feel when they exercise at different intensities: decennial update and progress towards a tripartite rationale for exercise intensity prescription. Sports Med. 2011;41:64171. Available from: http://link.springer.com/10.2165/11590680-000000000-00000.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Ephrem G, Hebson C, John A, et al. Frontiers in Fontan failure: innovation and improving outcomes: a conference summary. Congenit Heart Dis. 2019; 14:128137. PubMed ID: 30343507

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Foster GD, Linder B, Baranowski T, et al. A school-based intervention for diabetes risk reduction. N Engl J Med. 2010;363:44353. PubMed ID: 20581420 doi:10.1056/NEJMoa1001933

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Gates PE, Strain WD, Shore AC. Human endothelial function and microvascular ageing. Exp Physiol. 2009;94:3116. PubMed ID: 19042980 doi:10.1113/expphysiol.2008.043349

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Gibson TM, Ehrhardt MJ, Ness KK. Obesity and metabolic syndrome among adult survivors of childhood leukemia. Curr Treat Options Oncol. 2016;17:17. PubMed ID: 26951206 doi:10.1007/s11864-016-0393-5

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Gilliam TB, Freedson PS, Geenen DL, Shahraray B. Physical activity patterns determined by heart rate monitoring in 6-7 year-old children. Med Sci Sports Exerc. 1981;13:657. PubMed ID: 7219138

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Hagenbuchner M, Cliff DP, Trost SG, Van Tuc N, Peoples GE. Prediction of activity type in preschool children using machine learning techniques. J Sci Med Sport. 2015;18:42631. PubMed ID: 25088983 doi:10.1016/j.jsams.2014.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Hansmann G. Pulmonary hypertension in infants, children, and young adults. J Am Coll Cardiol. 2017;69:255169. PubMed ID: 28521893 doi:10.1016/j.jacc.2017.03.575

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Hardy R, Lawlor DA, Kuh D. A life course approach to cardiovascular aging. Future Cardiol. 2015;11:10113. PubMed ID: 25606706 doi:10.2217/fca.14.67

  • 45.

    Hebestreit H, Hebestreit A, Trusen A, Hughson RL. Oxygen uptake kinetics are slowed in cystic fibrosis. Med Sci Sports Exerc. 2005;37:107. PubMed ID: 15632661

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Herman KM, Hopman WM, Sabiston CM. Physical activity, screen time and self-rated health and mental health in Canadian adolescents. Prev Med. 2015;73:1126. PubMed ID: 25660484 doi:10.1016/j.ypmed.2015.01.030

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Hill AV. Muscular Movement in Man. New York, NY: McGraw-Hill; 1927.

  • 48.

    Hill AV, Long CNH, Lupton H. Muscular exercise, lactic acid and the supply and utilisation of oxygen. Proc R Soc B Biol Sci. 1924;97:15576. http://rspb.royalsocietypublishing.org/cgi/doi/10.1098/rspb.1924.0048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Hoffman MC, Mulrooney DA, Steinberger J, Lee J, Baker KS, Ness KK. Deficits in physical function among young childhood cancer survivors. J Clin Oncol. 2013;31:2799805. PubMed ID: 23796992 doi:10.1200/JCO.2012.47.8081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Houghton KM, Tucker LB, Potts JE, McKenzie DC. Fitness, fatigue, disease activity, and quality of life in pediatric lupus. Arthritis Rheum. 2008;59:53745. PubMed ID: 18383417 doi:10.1002/art.23534

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51.

    Idler N, Teuner CM, Hunger M, et al; GINIplus and LISAplus Study Groups. The association between physical activity and healthcare costs in children—results from the GINIplus and LISAplus cohort studies. BMC Public Health. 2015;15:437. PubMed ID: 25925399 doi:10.1186/s12889-015-1721-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Jang Y, Kim S, Kim K, Lee D. Deep learning-based classification with improved time resolution for physical activities of children. PeerJ. 2018;6:e5764. PubMed ID: 30364555 doi:10.7717/peerj.5764

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Jiménez-Pavón D, Kelly J, Reilly JJ. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: systematic review. Int J Pediatr Obes. 2010;5:318. PubMed ID: 19562608 doi:10.3109/17477160903067601

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54.

    Juma PA, Mohamed SF, Matanje Mwagomba BL, et al. Non-communicable disease prevention policy process in five African countries authors. BMC Public Health. 2018;18:961. PubMed ID: 30168393 doi:10.1186/s12889-018-5825-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 55.

    Keegan TH, Ries LA, Barr RD, et al. Comparison of cancer survival trends in the United States of adolescents and young adults with those in children and older adults. Cancer. 2016;122:100916. PubMed ID: 26848927 doi:10.1002/cncr.29869

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 56.

    Kerr J, Marinac CR, Ellis K, et al. Comparison of accelerometry methods for estimating physical activity. Med Sci Sports Exerc. 2017;49:61724. PubMed ID: 27755355 doi:10.1249/MSS.0000000000001124

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Klentrou P. Influence of exercise and training during critical stages of bone growth and development. Pediatr Exerc Sci. 2016;28(2):17886. PubMed ID: 26884506 doi:10.1123/pes.2015-0265

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58.

    Kohl HW, Craig CL, Lambert EV, et al. The pandemic of physical inactivity: global action for public health. Lancet. 2012;380:294305. http://www.sciencedirect.com/science/article/pii/S0140673612608988.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Lanzkron S, Carroll CP, Haywood C. Mortality rates and age at death from sickle cell disease: U.S., 1979–2005. Public Health Rep. 2013;128:110116. PubMed ID: 23450875 doi:10.1177/003335491312800206

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60.

    Liem RI, Reddy M, Pelligra SA, et al. Reduced fitness and abnormal cardiopulmonary responses to maximal exercise testing in children and young adults with sickle cell anemia. Physiol Rep. 2015;3:pii: e12338. PubMed ID: 25847915 doi:10.14814/phy2.12338

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61.

    Lobstein T, Jackson-Leach R, Moodie ML, et al. Child and adolescent obesity: part of a bigger picture. Lancet. 2015;385:251020. PubMed ID: 25703114 doi:10.1016/S0140-6736(14)61746-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62.

    Lunt D, Briffa T, Briffa NK, Ramsay J. Physical activity levels of adolescents with congenital heart disease. Aust J Physiother. 2003;49:4350. PubMed ID: 12600253 doi:10.1016/S0004-9514(14)60187-2

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Magnussen CG, Smith KJ, Juonala M. When to prevent cardiovascular disease? As early as possible: lessons from prospective cohorts beginning in childhood. Curr Opin Cardiol. 2013;28:56168. PubMed ID: 23928921 doi:10.1097/HCO.0b013e32836428f4

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 64.

    Maher CA, Toohey M, Ferguson M. Physical activity predicts quality of life and happiness in children and adolescents with cerebral palsy. Disabil Rehabil. 2016;38:86569. PubMed ID: 26218617 doi:10.3109/09638288.2015.1066450

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Mattioni Maturana F, Peyrard A, Temesi J, Millet GY, Murias JM. Faster V ˙ O 2 kinetics after priming exercises of different duration but same fatigue. J Sports Sci. 2018;36:1095102. PubMed ID: 28721747 doi:10.1080/02640414.2017.1356543

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 66.

    Mielgo-Ayuso J, Aparicio-Ugarriza R, Castillo A, et al. Physical activity patterns of the spanish population are mostly determined by sex and age: findings in the ANIBES study. PLoS ONE. 2016;11:e0149969. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0149969.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Moser C, Tirakitsoontorn P, Nussbaum E, Newcomb R, Cooper DM. Muscle size and cardiorespiratory response to exercise in cystic fibrosis. Am J Respir Crit Care Med. 2000;162(5):18237. PubMed ID: 11069820 doi:10.1164/ajrccm.162.5.2003057

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Mutlu EK, Mutlu C, Taskiran H, Ozgen IT. Association of physical activity level with depression, anxiety, and quality of life in children with type 1 diabetes mellitus. J Pediatr Endocrinol Metab. 2015;28:12738. PubMed ID: 26197465

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69.

    Nagano Y, Baba R, Kuraishi K, et al. Ventilatory control during exercise in normal children. Pediatr Res. 1998;43:7047. PubMed ID: 9585019 doi:10.1203/00006450-199805000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70.

    National Health and Nutrition Examination Survey (NHANES). National Youth Fitness Survey (NYFS) Treadmill Examination Manual. 2012. https://www.cdc.gov/nchs/data/nnyfs/treadmill.pdf

    • Export Citation
  • 71.

    Nemet D, Hong S, Mills PJ, Ziegler MG, Hill M, Cooper DM. Systemic vs. local cytokine and leukocyte responses to unilateral wrist flexion exercise. J Appl Physiol. 2002;93:54654. PubMed ID: 12133863

    • Search Google Scholar
    • Export Citation
  • 72.

    Nemet D, Oh Y, Kim HS, Hill M, Cooper DM. Effect of intense exercise on inflammatory cytokines and growth mediators in adolescent boys. Pediatrics. 2002;110:68189. PubMed ID: 12359780 doi:10.1542/peds.110.4.681

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73.

    Nemet D, Pontello AM, Rose-Gottron C, Cooper DM. Cytokines and growth factors during and after a wrestling season in adolescent boys. Med Sci Sports Exerc. 2004;36:794800. PubMed ID: 15126712

    • Search Google Scholar
    • Export Citation
  • 74.

    Nishi A, Milner DA, Giovannucci EL, et al. Integration of molecular pathology, epidemiology and social science for global precision medicine. Expert Rev Mol Diagn. 2016;16:1123. PubMed ID: 26636627 doi:10.1586/14737159.2016.1115346

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 75.

    Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro- and anti-inflammatory cytokine balance in strenuous exercise in humans. J Physiol. 1999;515(pt 1):28791. PubMed ID: 9925898 doi:10.1111/j.1469-7793.1999.287ad.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Pacheco DR, Silva MJ, Alexandrino AM, Torres RM. Exercise-related quality of life in subjects with asthma: a systematic review. J Asthma. 2012;49:48795. PubMed ID: 22554022 doi:10.3109/02770903.2012.680636

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Paridon SM, Mitchell PD, Colan SD, et al. A cross-sectional study of exercise performance during the first 2 decades of life after the Fontan operation. J Am Coll Cardiol. 2008;52:99107. PubMed ID: 18598887 doi:10.1016/j.jacc.2008.02.081

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78.

    Pate RR, Wang CY, Dowda M, Farrell SW, O’Neill JR. Cardiorespiratory fitness levels among US youth 12 to 19 years of age: findings from the 1999-2002 National Health and Nutrition Examination Survey. Arch Pediatr Adolesc Med. 2006;160:100512. PubMed ID: 17018458 doi:10.1001/archpedi.160.101005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 79.

    Patton GC, Azzopardi P, Kennedy E, Coffey C, Mokdad A. Global measures of health risks and disease burden in adolescents. In: Bundy DA, Silva ND, Horton S, Jamison DT, Patton GC, eds. Child and Adolescent Health and Development. 3rd ed. Washington, DC: The International Bank for Reconstruction and Development/the World Bank; 2017: 5772. PubMed ID: 30212128

    • Search Google Scholar
    • Export Citation
  • 80.

    Pavey TG, Gilson ND, Gomersall SR, Clark B, Trost SG. Field evaluation of a random forest activity classifier for wrist-worn accelerometer data. J Sci Med Sport. 2017;20:7580. PubMed ID: 27372275 doi:10.1016/j.jsams.2016.06.003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    Reverri EJ, Morrissey BM, Cross CE, Steinberg FM. Inflammation, oxidative stress, and cardiovascular disease risk factors in adults with cystic fibrosis. Free Radic Biol Med. 2014;76:26177. PubMed ID: 25172163 doi:10.1016/j.freeradbiomed.2014.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Reybrouck T, Vangesselen S, Mertens L, Gewillig M. Increased interbreath variability of gas exchange during exercise in children with cardiomyopathy. Heart. 2007;93:3778. PubMed ID: 17322519 doi:10.1136/hrt.2006.094508

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Rörsch A. The progress of science—Past, present and future. Humanities. 2014;3:442516. http://www.mdpi.com/2076-0787/3/4/442.

  • 84.

    Ruck MD, Keating DP, Saewyc EM, Earls F, Ben-Arieh A. The United Nations convention on the rights of the child: its relevance for adolescents. J Res Adolesc. 2016;26:1629. http://doi.wiley.com/10.1111/jora.12172.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 85.

    Salvadego D, Lazzer S, Busti C, et al. Gas exchange kinetics in obese adolescents. Inferences on exercise tolerance and prescription. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1298305. PubMed ID: 20686169 doi:10.1152/ajpregu.00038.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Sata F. Developmental origins of health and disease (DOHaD) and epidemiology. Nihon Eiseigaku Zasshi. 2016;71:4146. PubMed ID: 26832616 doi:10.1265/jjh.71.41

  • 87.

    Scheffler RW. The power of exercise and the exercise of power: the Harvard Fatigue Laboratory, distance running, and the disappearance of work, 1919–1947. J Hist Biol. 2015;48:391423. PubMed ID: 25287571 doi:10.1007/s10739-014-9392-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 88.

    Schneider M, Dunn A, Cooper D. Affect, exercise, and physical activity among healthy adolescents. J Sport Exerc Psychol. 2009;31;70623. PubMed ID: 20384008 doi:10.1123/jsep.31.6.706

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Schneiderman JE, Wilkes DL, Atenafu EG, et al. Longitudinal relationship between physical activity and lung health in patients with cystic fibrosis. Eur Respir J. 2014;43:81723. PubMed ID: 24176992 doi:10.1183/09031936.00055513

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 90.

    Seals DR, Melov S. Translational geroscience: emphasizing function to achieve optimal longevity. Aging. 2014;6:71830. PubMed ID: 25324468 doi:10.18632/aging.100694

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Shay CM, Ning H, Daniels SR, Rooks CR, Gidding SS, Lloyd-Jones DM. Status of cardiovascular health in US adolescents: prevalence estimates from the National Health and Nutrition Examination Surveys (NHANES) 2005–2010. Circulation. 2013;127:136976. PubMed ID: 23547177 doi:10.1161/CIRCULATIONAHA.113.001559

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Stary HC. Lipid and macrophage accumulations in arteries of children and the development of atherosclerosis. Am J Clin Nutr. 2000;72:1297S306S. PubMed ID: 11063472 doi:10.1093/ajcn/72.5.1297s

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Staudenmayer J, Pober D, Crouter S, Bassett D, Freedson P. An artificial neural network to estimate physical activity energy expenditure and identify physical activity type from an accelerometer. J Appl Physiol. 2009;107:13007. PubMed ID: 19644028 doi:10.1152/japplphysiol.00465.2009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 94.

    Tipton CM. Contemporary exercise physiology: fifty years after the closure of Harvard Fatigue Laboratory. Exerc Sport Sci Rev. 1998;26:31539. PubMed ID: 9696994 doi:10.1249/00003677-199800260-00014

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Tirakitsoontorn P, Nussbaum E, Moser C, Hill M, Cooper DM. Fitness, acute exercise, and anabolic and catabolic mediators in cystic fibrosis. Am J Respir Crit Care Med. 2001;164:14327. PubMed ID: 11704591 doi:10.1164/ajrccm.164.8.2102045

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 96.

    Tremblay MS, Barnes JD, González SA, et al. Global Matrix 2.0: report card grades on the physical activity of children and youth comparing 38 countries. J Phys Act Health. 2016;13:S34366. PubMed ID: 27848745 doi:10.1123/jpah.2016-0594

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 97.

    Trost SG, Wong WK, Pfeiffer KA, Zheng Y. Artificial neural networks to predict activity type and energy expenditure in youth. Med Sci Sports Exerc. 2012;44:18019. PubMed ID: 22525766 doi:10.1249/MSS.0b013e318258ac11

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Trost SG, Zheng Y, Wong WK. Machine learning for activity recognition: hip versus wrist data. Physiol Meas. 2014;35:21839. PubMed ID: 25340887 doi:10.1088/0967-3334/35/11/2183

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 99.

    Troutman WB, Barstow TJ, Galindo AJ, Cooper DM. Abnormal dynamic cardiorespiratory responses to exercise in pediatric patients after Fontan procedure. J Am Coll Cardiol. 1998;31(3):66873. PubMed ID: 9502651 doi:10.1016/S0735-1097(97)00545-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Usemann J, Xu B, Delgado-Eckert E, et al. Dynamics of respiratory symptoms during infancy and associations with wheezing at school age. ERJ Open Res. 2018;4:000372018. PubMed ID: 30474038 doi:10.1183/23120541.00037-2018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 101.

    Verhellen E. Convention on the Rights of the Child : Background, Motivation, Strategies, Main Themes. Leuven, Belgium: Garant; 2000. https://eric.ed.gov/?id=ED454987.

    • Search Google Scholar
    • Export Citation
  • 102.

    Viner RM, Ozer EM, Denny S, et al. Adolescence and the social determinants of health. Lancet. 2012;379:164152. https://www.sciencedirect.com/science/article/pii/S0140673612601494.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Wallace PJ, Mckinlay BJ, Coletta NA, et al. Effects of motivational self-talk on endurance and cognitive performance in the heat. Med Sci Sports Exerc. 2017;49:1919. PubMed ID: 27580154 doi:10.1249/MSS.0000000000001087

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Wasserman K, Whipp BJ. Breath-by-breath analysis of pulmonary gas exchange and the hyperpnea of exercise under non-steady-state and steady-state conditions. Chest. 1972;61:46S7S. PubMed ID: 5009867 doi:10.1016/S0012-3692(15)32698-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Weippert M, Behrens M, Gonschorek R, Bruhn S, Behrens K. Muscular contraction mode differently affects autonomic control during heart rate matched exercise. Front Physiol. 2015;6:156. PubMed ID: 26042047 doi:10.3389/fphys.2015.00156

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Wittekind SG, Edwards NM, Khoury PR, et al. Association of habitual physical activity with cardiovascular risk factors and target organ damage in adolescents and young adults. J Phys Act Health. 2018;15:17682. PubMed ID: 29172989 doi:10.1123/jpah.2017-0276

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 107.

    Woltanowski P, Wincewicz A, Sulkowski S. Protection of children’s human rights and health: a legacy of Julian Kramsztyk, Janusz Korczak, and Ludwik Rajchman. Glob Pediatr Health. 2018;5:2333794X1775415. PubMed ID: 29383326 doi:10.1177/2333794X17754157

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 108.

    World Health Organization. About social determinants of health. 2017. http://www.who.int/social_determinants/sdh_definition/en/.

    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 572 572 90
Full Text Views 35 35 1
PDF Downloads 15 15 0