Oxygen Uptake Kinetics in Youth: Characteristics, Interpretation, and Application

in Pediatric Exercise Science
View More View Less
  • 1 Swansea University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $70.00

1 year online subscription

USD  $94.00

Student 2 year online subscription

USD  $134.00

2 year online subscription

USD  $178.00

Pulmonary oxygen uptake (V˙O2) kinetics, which describes the aerobic response to near instantaneous changes in metabolic demand, provides a valuable insight into the control and coordination of oxidative phosphorylation during exercise. Despite their applicability to the highly sporadic habitual physical activity and exercise patterns of children, relatively little is known regarding the influence of internal and external stimuli on the dynamic V˙O2 response. Although insufficient evidence is available during moderate-intensity exercise, an age-related slowing of the phase 2 time constant (τ) and augmentation of the V˙O2 slow component appears to manifest during heavy-intensity exercise, which may be related to changes in the muscle phosphate controllers of oxidative phosphorylation, muscle oxygen delivery and utilization, and/or muscle fiber type recruitment patterns. Similar to findings in adults, aerobic training is associated with a faster phase 2 τ and smaller V˙O2 slow component in youth, independent of age or maturity, indicative of an enhanced oxidative metabolism. However, a lack of longitudinal or intervention-based training studies limits our ability to attribute these changes to training per se. Further, methodologically rigorous studies are required to fully resolve the interaction(s) between age, sex, biological maturity, and external stimuli, such as exercise training and exercise intensity and the dynamic V˙O2 response at the onset and offset of exercise.

The author is with Applied Sport, Technology Exercise and Medicine Research Centre, College of Engineering, Swansea University, Swansea, United Kingdom.

McNarry (m.mcnarry@swansea.ac.uk) is corresponding author.
  • 1.

    Armon Y, Cooper DM, Flores R, Zanconato S, Barstow TJ. Oxygen-uptake dynamics during high-intensity exercise in children and adults. J Appl Physiol. 1991;70(2):8418. PubMed ID: 2022576 doi:10.1152/jappl.1991.70.2.841

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Armstrong N, Barker AR. Oxygen uptake kinetics in children and adolescents: a review. Ped Exerc Sci. 2009;21(2):13047. doi:10.1123/pes.21.2.130

  • 3.

    Armstrong N, Fawkner S. Aerobic fitness. In: Armstrong N, ed. Paediatric Exercise Science. Philadelphia, PA: Churchill Livingstone Elsevier; 2007:16187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong N, Tomkinson G, Ekelund U. Aerobic fitness and its relationship to sport, exercise training and habitual physical activity during youth. Br J Sports Med. 2011;45(11):84958. PubMed ID: 21836169 doi:10.1136/bjsports-2011-090200

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Bailey RC, Olson J, Pepper JP, Barstow TJ, Cooper DM. The level and tempo of children’s physical activities; an observational study. Med Sci Sports Exerc. 1995;27:103341. PubMed ID: 7564970 doi:10.1249/00005768-199507000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Barker AR, Armstrong N. Pulmonary oxygen uptake kinetics. In: Armstrong N, van Mechelen W, eds. Children’s Sport and Exercise Medicine. 3rd ed. Oxford, UK: Oxford University Press; 2017:18194.

    • Search Google Scholar
    • Export Citation
  • 7.

    Barker AR, Jones AM, Armstrong N. The influence of priming exercise on oxygen uptake, cardiac output, and muscle oxygenation kinetics during very heavy-intensity exercise in 9- to 13-yr-old boys. J Appl Physiol. 2010;109(2):491500. PubMed ID: 20558758 doi:10.1152/japplphysiol.00139.2010

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Barker AR, Trebilcock E, Breese B, Jones AM, Armstrong N. The effect of priming exercise on O2 uptake kinetics, muscle O2 delivery and utilization, muscle activity, and exercise tolerance in boys. Appl Physiol Nutr Met. 2014;39(3):30817. doi:10.1139/apnm-2013-0174

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Barker AR, Welsman JR, Fulford J, Welford D, Armstrong N. Muscle phosphocreatine kinetics in children and adults at the onset and offset of moderate-intensity exercise. J Appl Physiol. 2008;105(2):44656. PubMed ID: 18499782 doi:10.1152/japplphysiol.00819.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Barker AR, Welsman JR, Fulford J, Welford D, Armstrong N. Quadriceps muscle energetics during incremental exercise in children and adults. Med Sci Sports Exerc. 2010;42(7):130313. PubMed ID: 20019637 doi:10.1249/MSS.0b013e3181cabaeb

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Barker AR, Welsman JR, Fulford J, Welford D, Williams CA, Armstrong N. Muscle phosphocreatine and pulmonary oxygen uptake kinetics in children at the onset and offset of moderate intensity exercise. Eur J Appl Physiol. 2008;102(6):72738. PubMed ID: 18172674 doi:10.1007/s00421-007-0650-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Barstow TJ, Jones AM, Nguyen PH, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise. J Appl Physiol. 1996;81(4):164250. PubMed ID: 8904581 doi:10.1152/jappl.1996.81.4.1642

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Barstow TJ, Lamarra N, Whipp BJ. Modulation of muscle and pulmonary O2 uptakes by circulatory dynamics during exercise. J Appl Physiol. 1990;68(3):97989. PubMed ID: 2341363 doi:10.1152/jappl.1990.68.3.979

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Barstow TJ, Mole PA. Linear and nonlinear characteristics of oxygen-uptake kinetics during heavy exercise. J Appl Physiol. 1991;71(6):2099106. PubMed ID: 1778898 doi:10.1152/jappl.1991.71.6.2099

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Barstow TJ, Scheuermann BW. Effects of maturation and ageing on VO2 kinetics. In: Jones AM, Poole DC, eds. Oxygen Uptake Kinetics in Sports, Exercise and Medicine. New York, NY: Routledge; 2004:33152.

    • Search Google Scholar
    • Export Citation
  • 16.

    Bearden SE, Moffatt RJ. VO2 kinetics and the O2 deficit in heavy exercise. J Appl Physiol. 2000;88(4):140712. PubMed ID: 10749836 doi:10.1152/jappl.2000.88.4.1407

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Bell RD, MacDougall JD, Billeter R, Howald H. Muscle fibre types and morphometric analysis of skeletal muscles in six year old children. Med Sci Sports Exerc. 1980;21:2831. PubMed ID: 7392899 doi:10.1249/00005768-198004001-00166

    • Search Google Scholar
    • Export Citation
  • 18.

    Beneke R, Schwarz V, Leithauser R, Hutler M, von Duvillard S. Maximal lactate steady state in children. Pediatr Exerc Sci. 1996;8(4):32836. doi:10.1123/pes.8.4.328

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Berg A, Kim SS, Keul J. Skeletal muscle enzyme activities in healthy young subjects. Int J Sports Med. 1986;7:2369. PubMed ID: 3759306 doi:10.1055/s-2008-1025766

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Billat VL, Mille-Hamard L, Demarle A, Koralsztein JP. Effect of training in humans on off- and on-transient oxygen uptake kinetics after severe exhausting intensity runs. Eur J Appl Physiol. 2002;87(6):496505. PubMed ID: 12355188 doi:10.1007/s00421-002-0648-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Bouchard C. Genetics of aerobic power and capacity. In: Malina RM, Bouchard C, eds. Sport and Human Genetics. Champaign, IL: Human Kinetics; 1986:6088.

    • Search Google Scholar
    • Export Citation
  • 22.

    Breese BC, Armstrong N, Barker AR, Williams CA. The effect of pedal rate on pulmonary O2 uptake kinetics during very heavy intensity exercise in trained and untrained teenage boys. Respir Physiol Neurobiol. 2011;177(2):14954. PubMed ID: 21453796 doi:10.1016/j.resp.2011.03.018

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23.

    Breese BC, Barker AR, Armstrong N, Fulford J, Williams CA. Influence of thigh activation on the VO2 slow component in boys and men. Eur J Appl Physiol. 2014;114(11):230919. PubMed ID: 25011494 doi:10.1007/s00421-014-2941-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Breese BC, Barker AR, Armstrong N, Jones AM, Williams CA. The effect of baseline metabolic rate on pulmonary O2 uptake kinetics during very heavy intensity exercise in boys and men. Respir Physiol Neurobiol. 2012;180(2–3):2239. doi:10.1016/j.resp.2011.11.013

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Breese BC, Williams CA, Barker AR, Welsman J, Fawkner SG, Armstrong N. Longitudinal changes in the oxygen uptake kinetic response to heavy-intensity exercise in 14–16 year old boys. Pediatr Exerc Sci. 2010;22:6980. doi:10.1123/pes.22.1.69

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Brittain CJ, Rossiter HB, Kowalchuk JM, Whipp BJ. Effect of prior metabolic rate on the kinetics of oxygen uptake during moderate-intensity exercise. Eur J Appl Physiol. 2001;86:12534. PubMed ID: 11822471 doi:10.1007/s004210100514

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Carter BJ, Jones AM, Barstow TJ, Burnley M, Williams CA, Doust JH. Oxygen uptake kinetics in treadmill running and cycle ergometry: a comparison. J Appl Physiol. 2000;89:899907. PubMed ID: 10956332 doi:10.1152/jappl.2000.89.3.899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28.

    Cleuziou C, Lecoq AM, Candau R, Courteix D, Guenon P, Obert P. Kinetics of oxygen uptake at the onset of moderate and heavy exercise in trained and untrained prepubertal children. Sci Sports. 2002;17(6):2916. doi:10.1016/S0765-1597(02)00169-7

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Cooper DM, Berry C, Lamarra N, Wasserman K. Kinetics of oxygen-uptake and heart-rate at onset of exercise in children. J Appl Physiol. 1985;59(1):2117. PubMed ID: 4030564 doi:10.1152/jappl.1985.59.1.211

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30.

    Crow MT, Kushmerick MJ. Chemical energetics of slow-twitch and fast-twitch muscles of the mouse. J Gen Physiol. 1982;79(1):14766. PubMed ID: 7061985 doi:10.1085/jgp.79.1.147

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31.

    Cunningham DA, St Croix CM, Paterson DH, Ozyener F, Whipp BJ. The off-transient pulmonary oxygen uptake VO2 kinetics following attainment of a particular VO2 during heavy-intensity exercise in humans. Exp Physiol. 2000;85(3):33947. PubMed ID: 10825422 doi:10.1111/j.1469-445X.2000.01919.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Danis A, Kyriazis Y, Klissouras V. The effect of training in male prepubertal and pubertal monozygotic twins. Eur J Appl Physiol. 2003;89(3–4):30918. doi:10.1007/s00421-002-0785-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Doncaster G, Marwood S, Iga J, Unnithan V. Influence of oxygen uptake kinetics on physical performance in youth soccer. Eur J Appl Physiol. 2016;116(9):178194. PubMed ID: 27436343 doi:10.1007/s00421-016-3431-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Endo MY, Kobayakawa M, Kinugasa R, et al. Thigh muscle activation distribution and pulmonary VO2 kinetics during moderate, heavy, and very heavy intensity cycling exercise in humans. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R81220. PubMed ID: 17459915 doi:10.1152/ajpregu.00028.2007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Engelen M, Porszasz J, Riley M, Wasserman K, Maehara K, Barstow TJ. Effects of hypoxic hypoxia on O2 uptake and heart rate kinetics during heavy exercise. J Appl Physiol. 1996;81(6):25008. PubMed ID: 9018498 doi:10.1152/jappl.1996.81.6.2500

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Eriksson BO, Gollnick PD, Saltin B. Muscle metabolism and enzyme activities after training in boys 11–13 years old. Acta Physiol Scand. 1973;87(4):48597. PubMed ID: 4269332 doi:10.1111/j.1748-1716.1973.tb05415.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Fawkner S, Armstrong N. Modelling the VO2 kinetic response to moderate intensity exercise in children. Sports Med. 2002;33(9):65169.

  • 38.

    Fawkner S, Armstrong N. Oxygen uptake kinetic response to exercise in children. Sports Med. 2003;33(9):65169. PubMed ID: 12846589 doi:10.2165/00007256-200333090-00002

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Fawkner SG, Armstrong N. Assessment of critical power with children. Pediatr Exerc Sci. 2002;14(3):25968. doi:10.1123/pes.14.3.259

  • 40.

    Fawkner SG, Armstrong N. Longitudinal changes in the kinetic response to heavy-intensity exercise in children. J Appl Physiol. 2004;97(2):4606. PubMed ID: 15033964 doi:10.1152/japplphysiol.00784.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41.

    Fawkner SG, Armstrong N. Modelling the VO2 kinetic response to heavy intensity exercise in children. Ergonomics. 2004;47(14):151727. PubMed ID: 15697067 doi:10.1080/00140130412331290899

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42.

    Fawkner SG, Armstrong N. Sex differences in the oxygen uptake kinetic response to heavy-intensity exercise in prepubertal children. Eur J Appl Physiol. 2004;93(1–2):2106. doi:10.1007/s00421-004-1201-7

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Fawkner SG, Armstrong N. The slow-component response of VO2 to heavy intensity exercise in children. In: Reilly T, Marfell-Jones M, eds. Kinanthropometry VIII. London, UK: Routledge; 2003:10513.

    • Search Google Scholar
    • Export Citation
  • 44.

    Fawkner SG, Armstrong N, Potter CR, Welsman JR. Oxygen uptake kinetics in children and adults after the onset of moderate-intensity exercise. J Sports Sci. 2002;20(4):31926. PubMed ID: 12003277 doi:10.1080/026404102753576099

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Fournier M, Ricci J, Taylor AW, Ferguson RJ, Montpetit RR, Chaitman BR. Skeletal-muscle adaptation in adolescent boys—sprint and endurance training and detraining. Med Sci Sports Exerc. 1982;14(6):4536. doi:10.1249/00005768-198206000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Franco RL, Bowen MK, Arena R, et al. Sex differences in pulmonary oxygen uptake kinetics in obese adolescents. J Pediatr. 2014;165(6):11615. doi:10.1016/j.jpeds.2014.08.005

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Fukuoka Y, Grassi B, Conti M, et al. Early effects of exercise training on VO2 on- and off-kinetics in 50-year-old subjects. Pflugers Arch Eur J Physiol. 2002;443(5–6):6907. doi:10.1007/s00424-001-0748-y

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Gerbino A, Ward SA, Whipp BJ. Effects of prior exercise on pulmonary gas-exchange kinetics during high-intensity exercise in humans. J Appl Physiol. 1996;80(1):99107. PubMed ID: 8847338 doi:10.1152/jappl.1996.80.1.99

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49.

    Grassi B, Poole DC, Richardson RS, Knight DR, Erickson BK, Wagner PD. Muscle O2 uptake kinetics in humans: implications for metabolic control. J Appl Physiol. 1996;80(3):98898. PubMed ID: 8964765 doi:10.1152/jappl.1996.80.3.988

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50.

    Haralambie G. Enzyme activities in skeletal muscle of 13–15 years old adolescents. Bull Eur Physiopathol Respir. 1982;18:6574. PubMed ID: 7053778

  • 51.

    Hebestreit H, Kriemler S, Hughson RL, Bar-Or O. Kinetics of oxygen uptake at the onset of exercise in boys and men. J Appl Physiol. 1998;85(5):183341. PubMed ID: 9804588 doi:10.1152/jappl.1998.85.5.1833

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52.

    Henry FM. Aerobic oxygen consumption and alactic debt in muscular work. J Appl Physiol. 1951;3(7):42738. PubMed ID: 14803395 doi:10.1152/jappl.1951.3.7.427

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53.

    Hill AV, Lupton H. Muscular exercise, lactic acid, and the supply and utilization of oxygen. Q J Med. 1923;os-16(62):13571. doi:10.1093/qjmed/os-16.62.135

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 54.

    Hill DW, Poole DC, Smith JC. The relationship between power and the time to achieve VO2max. Med Sci Sports Exerc. 2002;34(4):70914. PubMed ID: 11932583

    • Search Google Scholar
    • Export Citation
  • 55.

    Holloszy JO. Biochemical adaptations in muscle—effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;242(9):227882. PubMed ID: 4290225

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56.

    Hughson RL, Tschakovsky ME, Houston ME. Regulation of oxygen consumption at the onset of exercise. Exerc Sport Sci Rev. 2001;29(3):12933. PubMed ID: 11474961 doi:10.1097/00003677-200107000-00008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57.

    Jannson E. Age-related fibre type changes in human skeletal muscle. In: Maughan RM, Shirreffs S, eds. Biochemistry of Exercise IX. Champaign, IL: Human Kinetics; 1996:297307.

    • Search Google Scholar
    • Export Citation
  • 58.

    Jones AM, Carter H, Pringle JSM, Campbell IT. Effect of creatine supplementation on oxygen uptake kinetics during submaximal cycle exercise. J Appl Physiol. 2002;92(6):25717. PubMed ID: 12015375 doi:10.1152/japplphysiol.01065.2001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59.

    Jones AM, McConnell AM. Effect of exercise modality on oxygen uptake kinetics during heavy exercise. Eur J Appl Physiol. 1999;80(3):2139. doi:10.1007/s004210050584

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60.

    Jones AM, Poole DC. Introduction to oxygen uptake kinetics. In: Jones AM, Poole DC, eds. Oxygen Uptake Kinetics on Sport, Exercise and Medicine. Oxon, UK: Routledge; 2005:135.

    • Search Google Scholar
    • Export Citation
  • 61.

    Katch VL. Physical conditioning of children. J Adols Health. 1983;3(4):2416. doi:10.1016/S0197-0070(83)80245-9

  • 62.

    Koch G. Muscle blood flow after ischemic work and during bicycle ergometer work in boys aged 12 years. Acta Paediatr Belg. 1974;28:2939. PubMed ID: 4446990

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63.

    Koch G. Muscle blood flow in prepubertal boys. In: Borms J, Hebbelinck M, eds. Medicine and Sport. Vol. 11. Basel, Switzerland: Karger; 1978: 3946.

    • Search Google Scholar
    • Export Citation
  • 64.

    Koppo K, Bouckaert J, Jones AM. Effects of training status and exercise intensity on phase II VO2 kinetics. Med Sci Sports Exerc. 2004;36(2):22532. PubMed ID: 14767244 doi:10.1249/01.MSS.0000113473.48220.20

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65.

    Krustrup P, Hellsten Y, Bangsbo J. Intense interval training enhances human skeletal muscle oxygen uptake in the initial phase of dynamic exercise at high but not at low intensities. J Physiol. 2004;559(1):33545. doi:10.1113/jphysiol.2004.062232

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66.

    Krustrup P, Söderlund K, Mohr M, González-Alonso J, Bangsbo J. Recruitment of fibre types and quadriceps muscle portions during repeated, intense knee-extensor exercise in humans. Pflügers Arch. 2004;449(1):5665. PubMed ID: 30278716 doi:10.1007/s00424-004-1304-3

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67.

    Kushmerick MJ, Meyer RA, Brown TR. Regulation of oxygen consumption in fast-twitch and slow-twitch muscle. Am J Physiol. 1992;263(3):C598606. doi:10.1152/ajpcell.1992.263.3.C598

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68.

    Lador F, Kenfack MA, Moia C, et al. Simultaneous determination of the kinetics of cardiac output, systemic O2 delivery, and lung O2 uptake at exercise onset in men. Am J Physiol Regul Integr Comp Physiol. 2006;290(4):R10719. PubMed ID: 16239373 doi:10.1152/ajpregu.00366.2005

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 69.

    Lai N, Nasca MM, Silva MA, Silva FT, Whipp BJ, Cabrera ME. Influence of exercise intensity on pulmonary oxygen uptake kinetics at the onset of exercise and recovery in male adolescents. Appl Physiol Nutr Met. 2008;33(1):10717. doi:10.1139/H07-154

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 70.

    Lamarra N, Whipp BJ, Ward SA, Wasserman K. Effect of interbreath fluctuations on characterizing exercise gas exchange kinetics. J Appl Physiol. 1987;62:200312. PubMed ID: 3110126 doi:10.1152/jappl.1987.62.5.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71.

    Leclair E, Berthoin S, Borel B, et al. Faster pulmonary oxygen uptake kinetics in children vs adults due to enhancements in oxygen delivery and extraction. Scand J Med Sci Sports. 2013;23(6):70512. PubMed ID: 22353227 doi:10.1111/j.1600-0838.2012.01446.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72.

    Linnarsson D. Dynamics of pulmonary gas-exchange and heart-rate changes at start and end of exercise. Acta Physiol Scand. 1974;415:168.

    • Search Google Scholar
    • Export Citation
  • 73.

    MacDonald M, Pedersen PK, Hughson RL. Acceleration of VO2 kinetics in heavy submaximal exercise by hyperoxia and prior high-intensity exercise. J Appl Physiol. 1997;83(4):131825. PubMed ID: 9338442 doi:10.1152/jappl.1997.83.4.1318

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74.

    Machado FA, Guglielmo LGA, Greco CC, Denadai BS. Effects of exercise mode on the oxygen uptake kinetic response to severe intensity exercise in prepubertal children. Ped Exerc Sci. 2009;21:15970. doi:10.1123/pes.21.2.159

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75.

    MacPhee SL, Shoemaker JK, Paterson DH, Kowalchuk JM. Kinetics of O2 uptake, leg blood flow, and muscle deoxygenation are slowed in the upper compared with lower region of the moderate-intensity exercise domain. J Appl Physiol. 2005;99(5):182234. PubMed ID: 16037398. doi:10.1152/japplphysiol.01183.2004

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76.

    Marwood S, Roche D, Garrard M, Unnithan V. Pulmonary oxygen uptake and muscle deoxygenation kinetics during recovery in trained and untrained male adolescents. Eur J Appl Physiol. 2011;111(11):277584. PubMed ID: 21409403 doi:10.1007/s00421-011-1901-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77.

    Marwood S, Roche D, Rowland TW, Garrard M, Unnithan V. Faster pulmonary oxygen uptake kinetics in trained versus untrained male adolescents. Med Sci Sports Exer. 2010;42(1):12734. doi:10.1249/MSS.0b013e3181af20d0

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 78.

    McNarry MA, Harrison NK, Withers T, Chinnappa N, Lewis MJ. Pulmonary oxygen uptake and muscle deoxygenation kinetics during heavy intensity cycling exercise in patients with emphysema and idiopathic pulmonary fibrosis. BMC Pulm Med. 2017;17(1):26. PubMed ID: 28143453 doi:10.1186/s12890-017-0364-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79.

    McNarry MA, Lambrick D, Westrupp N, Faulkner J. The influence of a six-week, high-intensity games intervention on the pulmonary oxygen uptake kinetics in prepubertal obese and normal-weight children. Appl Physiol Nutr Met. 2015;40(10):10128. doi:10.1139/apnm-2015-0051

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 80.

    McNarry MA, Welsman JR, Jones AM. Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pubertal girls. Eur J Appl Physiol. 2010;111:62131. PubMed ID: 20945151 doi:10.1007/s00421-010-1681-6

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81.

    McNarry MA, Welsman JR, Jones AM. Influence of training status and maturity on pulmonary O2 uptake recovery kinetics following cycle and upper body exercise in girls. Pediatr Exerc Sci. 2012;24(2):24661. PubMed ID: 22728416 doi:10.1123/pes.24.2.246

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 82.

    Mogensen M, Bagger M, Pedersen PK, Fernstrom M, Sahlin K. Cycling efficiency in humans is related to low UCP3 content and to type I fibres but not to mitochondrial efficiency. J Physiol. 2006;571(3):66981. doi:10.1113/jphysiol.2005.101691

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83.

    Murias JM, Spencer MD, Kowalchuk JM, Paterson DH. Influence of Phase I duration on Phase II VO2 kinetics parameter estimates in older and young adults. Am J Physiol Regul Integr Comp Physiol. 2011;301:R21824. PubMed ID: 21490368 doi:10.1152/ajpregu.00060.2011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 84.

    Obert P, Cleuziou C, Candau R, Courteix D, Lecoq AM, Guenon P. The slow component of O2 uptake kinetics during high-intensity exercise in trained and untrained prepubertal children. Int J Sports Med. 2000;21(1):316. PubMed ID: 10683096 doi:10.1055/s-2000-8856

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85.

    Özyener F, Rossiter HB, Ward SA, Whipp BJ. Influence of exercise intensity on the on- and off-transient kinetics of pulmonary oxygen uptake in humans. J Physiol Lond. 2001;533(3):891902. doi:10.1111/j.1469-7793.2001.t01-1-00891.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 86.

    Paterson DH, Whipp BJ. Asymmetries of oxygen-uptake transients at the onset and offset of heavy exercise in humans. J Physiol. 1991;443:57586. PubMed ID: 1822539 doi:10.1113/jphysiol.1991.sp018852

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 87.

    Poole DC, Barstow TJ, McDonough P, Jones AM. Control of oxygen uptake during exercise. Med Sci Sport Exerc. 2008;40(3):46274. doi:10.1249/MSS.0b013e31815ef29b

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 88.

    Poole DC, Gaesser GA, Hogan MC, Knight DR, Wagner PD. Pulmonary and leg VO2 during submaximal exercise—implications for muscular efficiency. J Appl Physiol. 1992;72(2):80510. PubMed ID: 1559962 doi:10.1152/jappl.1992.72.2.805

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 89.

    Poole DC, Jones AM. Oxygen uptake kinetics. Comp Physiol. 2012;2:93396. PubMed ID: 23798293 doi:10.1002/cphy.c100072

  • 90.

    Potter CR, Childs DJ, Houghton W, Armstrong N. Breath-to-breath “noise” in the ventilatory and gas exchange responses of children to exercise. Eur J Appl Physiol Occup Physiol. 1999;80(2):11824. PubMed ID: 10408322 doi:10.1007/s004210050567

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 91.

    Pringle JS, Carter H, Doust JH, Jones AM. Oxygen uptake kinetics during horizontal and uphill treadmill running in humans. Eur J Appl Physiol. 2002;88(1–2):1639. doi:10.1007/s00421-002-0687-0

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 92.

    Pringle JS, Doust JH, Carter H, et al. Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol. 2003;89(3–4):289300. doi:10.1007/s00421-003-0799-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 93.

    Pringle JSM, Doust JH, Carter H, Campbell IT, Tolfrey K, Jones AM. Influence of muscle fibre type on oxygen uptake kinetics during submaximal cycle exercise in humans. J Physiol Lond. 2002;539:55P6P.

    • Search Google Scholar
    • Export Citation
  • 94.

    Ratel S, Blazevich AJ. Are prepubertal children metabolically comparable to well-trained adult endurance athletes? Sports Med. 2017;47(8):147785. PubMed ID: 28044282 doi:10.1007/s40279-016-0671-1

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 95.

    Rossiter HB, Ward SA, Howe FA, Kowalchuk JM, Griffiths JR, Whipp BJ. Dynamics of intramuscular P-31-MRS Pi peak splitting and the slow components of PCr and O2 uptake during exercise. J Appl Physiol. 2002;93(6):205969. PubMed ID: 12391122 doi:10.1152/japplphysiol.00446.2002

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 96.

    Saynor ZL, Barker AR, Oades PJ, Williams CA. Impaired pulmonary VO2 kinetics in cystic fibrosis depend on exercise intensity. Med Sci Sports Exerc. 2016;48(11):20909. PubMed ID: 27285491 doi:10.1249/MSS.0000000000001004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 97.

    Shoemaker JK, Phillips SM, Green HJ, Hughson RL. Faster femoral artery blood velocity kinetics at the onset of exercise following short-term training. Cardiovasc Res. 1996;31(2):27886. PubMed ID: 8730405 doi:10.1016/S0008-6363(95)00199-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 98.

    Spencer MD, Murias JM, Kowalchuk JM, Paterson DH. Effect of moderate-intensity work rate increment on phase II τVO2, functional gain and Δ[HHb]. Eur J Appl Physiol. 2013;113(3):54557. PubMed ID: 22829340 doi:10.1007/s00421-012-2460-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 99.

    Springer C, Barstow TJ, Wasserman K, Cooper DM. Oxygen-uptake and heart-rate responses during hypoxic exercise in children and adults. Med Sci Sports Exerc. 1991;23(1):719. PubMed ID: 1997815 doi:10.1249/00005768-199101000-00012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 100.

    Turley KR. Cardiovascular responses to exercise in children. Sports Med. 1997;24(4):24157. PubMed ID: 9339493 doi:10.2165/00007256-199724040-00003

  • 101.

    Unnithan V, Roche D, Garrard M, Holloway K, Marwood S. Oxygen uptake kinetics in trained adolescent females. Eur J Appl Physiol. 2015;115(1):21320. PubMed ID: 25270943 doi:10.1007/s00421-014-3005-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 102.

    Vanhatalo A, Black MI, DiMenna FJ, et al. The mechanistic bases of the power–time relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol. 2016;594(15):440723. PubMed ID: 26940850 doi:10.1113/JP271879

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 103.

    Whipp BJ. Rate constant for the kinetics of oxygen uptake during light exercise. J Appl Physiol. 1971;30:2613. PubMed ID: 5539892 doi:10.1152/jappl.1971.30.2.261

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 104.

    Whipp BJ, Ward SA. Physiological determinants of pulmonary gas-exchange kinetics during exercise. Med Sci Sport Exerc. 1990;22(1):6271. doi:10.1249/00005768-199002000-00011

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 105.

    Whipp BJ, Ward SA, Rossiter HB. Pulmonary O2 uptake during exercise: conflating muscular and cardiovascular responses. Med Sci Sports Exerc. 2005;37:157485. PubMed ID: 16177611 doi:10.1249/01.mss.0000177476.63356.22

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 106.

    Whipp BJ, Wasserman K. Oxygen uptake kinetics for various intensities of constant-load work. J Appl Physiol. 1972;33(3):3516. PubMed ID: 5056210 doi:10.1152/jappl.1972.33.3.351

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 107.

    Wilkerson DP, Koppo K, Barstow TJ, Jones AM. Effect of work rate on the functional “gain” of Phase II pulmonary O2 uptake response to exercise. Respir Physiol Neurobiol. 2004;142(2–3):21123. doi:10.1016/j.resp.2004.06.001

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 108.

    Williams CA, Carter H, Jones AM, Doust JH. Oxygen uptake kinetics during treadmill running in boys and men. J Appl Physiol. 2001;90(5):17006. PubMed ID: 11299258 doi:10.1152/jappl.2001.90.5.1700

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 109.

    Winlove MA, Jones AM, Welsman J. Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pre-pubertal girls. Eur J Appl Physiol. 2010;108(6):116979. PubMed ID: 20033206 doi:10.1007/s00421-009-1320-2

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 110.

    Yoshida T, Yamamoto K, Udo M. Relationship between cardiac output and oxygen uptake at the onset of exercise. Eur J Appl Physiol. 1993;66:15560. doi:10.1007/BF01427057

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 111.

    Zanconato S, Buchthal S, Barstow TJ, Cooper DM. P-31-magnetic resonance spectroscopy of leg muscle metabolism during exercise in children and adults. J Appl Physiol. 1993;74(5):22148. PubMed ID: 8335550 doi:10.1152/jappl.1993.74.5.2214

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 112.

    Zanconato S, Cooper DM, Armon Y. Oxygen cost and oxygen-uptake dynamics and recovery with 1-min of exercise in children and adults. J Appl Physiol. 1991;71(3):9938. PubMed ID: 1757338 doi:10.1152/jappl.1991.71.3.993

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1500 828 89
Full Text Views 61 19 2
PDF Downloads 48 21 2