A Systematic Approach to Interpreting the Cardiopulmonary Exercise Test in Pediatrics

in Pediatric Exercise Science
View More View Less
  • 1 University Medical Center Utrecht
  • 2 Maastricht University
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

The use of cardiopulmonary exercise testing in pediatrics provides critical insights into potential physiological causes of unexplained exercise-related complaints or symptoms, as well as specific pathophysiological patterns based on physiological responses or abnormalities. Clinical interpretation of the results of a cardiopulmonary exercise test in pediatrics requires specific knowledge with regard to pathophysiological responses and interpretative strategies that can be adapted to address concerns specific to the child’s medical condition or disability. In this review, the authors outline the 7-step interpretative approach that they apply in their outpatient clinic for diagnostic, prognostic, and evaluative purposes. This approach allows the pediatric clinician to interpret cardiopulmonary exercise testing results in a systematic order to support their physiological reasoning and clinical decision making.

Van Brussel, Hulzebos, Burghard, and Takken are with the Department of Medical Physiology, Child Development and Exercise Center, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands. Bongers is with the Department of Epidemiology, Faculty of Health, Medicine and Life Sciences, Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands; and the Department of Nutrition and Human Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.

Van Brussel (m.vanbrussel@umcutrecht.nl) is corresponding author.
  • 1.

    Akkerman M, van Brussel M, Bongers BC, Hulzebos EHJ, Helders PJ, Takken T. Oxygen uptake efficiency slope in healthy children. Pediatr Exerc Sci. 2010;22(3):43141. PubMed ID: 20814038 doi:10.1123/pes.22.3.431

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    American College of Sports Medicine Position Stand and American Heart Association. Recommendations for cardiovascular screening, staffing, and emergency policies at health/fitness facilities. Med Sci Sports Exerc. 1998;30(6):100918.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    American Thoracic Society; American College of Chest Physicians. ATS/ACCP statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;15(167):21177. PubMed ID: 12524257 doi:10.1164/rccm.167.2.211

    • Search Google Scholar
    • Export Citation
  • 4.

    Armstrong N, Winsley R. Is peak VO2 a maximal index of children’s aerobic fitness? Int J Sports Med. 1996;17(5):3569. PubMed ID: 8858407 doi:10.1055/s-2007-972860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Barker AR, Williams CA, Jones AM, Armstrong N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. 2011;45(6):498503. PubMed ID: 19679577 doi:10.1136/bjsm.2009.063180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Bar-Or O, Rowland TW. Pediatric Sports Medicine for the Practitioner. Champaign, IL: Human Kinetics; 2004.

  • 7.

    Belardinelli R, Lacalaprice F, Tiano L, Muçai A, Perna GP. Cardiopulmonary exercise testing is more accurate than ECG-stress testing in diagnosing myocardial ischemia in subjects with chest pain. Int J Cardiol. 2014;174(2):33742. PubMed ID: 24768399 doi:10.1016/j.ijcard.2014.04.102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Blanchard J, Blais S, Chetaille P, et al. New reference values for cardiopulmonary exercise testing in children. Med Sci Sports Exerc. 2018;50(6):112533. PubMed ID: 29346167 doi:10.1249/MSS.0000000000001559

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9.

    Bongers BC, van Brussel M, Hulzebos EHJ, Takken T. Pediatric Norms for Cardiopulmonary Exercise Testing: In Relation to Sex and Age. ‘s-Hertogenbosch, The Netherlands: BOXPress; 2014.

    • Search Google Scholar
    • Export Citation
  • 10.

    Bongers BC, Werkman MS, Takken T, Hulzebos EHJ. Ventilatory response to exercise in adolescents with cystic fibrosis and mild-to-moderate airway obstruction. Springerplus. 2014;3(1):696706. PubMed ID: 25512888 doi:10.1186/2193-1801-3-696

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Borel B, Leclair E, Thevenet D, Beghin L, Gottrand F, Fabre C. Mechanical ventilatory constraints during incremental exercise in healthy and cystic fibrosis children. Pediatr Pulmonol. 2014;49(3):2219. PubMed ID: 23765600 doi:10.1002/ppul.22804

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Chang RKR, Gurvitz M, Rodriguez S, Hong E, Klitzner TS. Current practice of exercise stress testing among pediatric cardiology and pulmonology centers in the United States. Pediatr Cardiol. 2006;27(1):1106. PubMed ID: 16235016 doi:10.1007/s00246-005-1046-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Connick DM. The role of exercise stress testing in pediatric patients with heart disease. Prog Pediatr Cardiol. 2005;20(1):4552. doi:10.1016/j.ppedcard.2004.12.004

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Cooper CB, Storer TW. Exercise Testing and Interpretation. Cambridge, UK: Cambridge University Press; 2001.

  • 15.

    Diekman EF, Visser G, Schmitz JPJ, et al. Altered energetics of exercise explain risk of rhabdomyolysis in very long-chain Acyl-CoA dehydrogenase deficiency. PLoS ONE. 2016;11(2):014781819. PubMed ID: 26881790 doi:10.1371/journal.pone.0147818

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Dumitrescu D, Rosenkranz S. Graphical data display for clinical cardiopulmonary exercise testing. Ann Am Thorac Soc. 2017;14 Suppl 1:S1221. PubMed ID: 28541745 doi:10.1513/AnnalsATS.201612-955FR

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Fawkner SG. Pulmonary function. In: Armstrong N, van Mechelen W, eds. Paediatric Exercise Science and Medicine. Oxford, UK: Oxford University Press; 2008, pp. 24353.

    • Search Google Scholar
    • Export Citation
  • 18.

    Forman DE, Myers J, Lavie CJ, Guazzi M, Celli B, Arena R. Cardiopulmonary exercise testing: relevant but underused. Postgrad Med. 2010;122(6):6886. PubMed ID: 21084784 doi:10.3810/pgm.2010.11.2225

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Gelbart M, Ziv-Baran T, Williams CA, Yarom Y, Dubnov-Raz G. Prediction of maximal heart rate in children and adolescents. Clin J Sport Med. 2017;27(2):13944. PubMed ID: 27177205 doi:10.1097/JSM.0000000000000315

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20.

    Gibbons RJ, Balady GJ, Beasley JW, et al. ACC/AHA guidelines for exercise testing. J Am Coll Cardiol. 1997;30(1):260315. PubMed ID: 9207652 doi:10.1016/S0735-1097(97)00150-2

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Godfrey S. Exercise Testing in Children: Applications in Health and Disease. London, UK:Saunders. 1974.

  • 22.

    Issekutz B, Birkhead NC, Rodahl K. Use of respiratory quotients in assessment of aerobic work capacity. J Appl Physiol. 2013;17(1):4750. doi:10.1152/jappl.1962.17.1.47

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Kaafarani M, Schroer C, Takken T. Reference values for blood pressure response to cycle ergometry in the first two decades of life: comparison with patients with a repaired coarctation of the aorta. Expert Rev Cardiovasc Ther. 2017;15(12):94551. PubMed ID: 28949265 doi:10.1080/14779072.2017.1385392

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Kotte EMW, de Groot JF, Bongers BC, Winkler AMF, Takken T. Fitkids treadmill test: age- and sex-related normative values in Dutch children and adolescents. Phys Ther. 2016;96(11):176472. PubMed ID: 27197825 doi:10.2522/ptj.20150399

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25.

    Levett DZH, Jack S, Swart M, et al. Perioperative cardiopulmonary exercise testing (PCPET): consensus clinical guidelines on indications, organization, conduct, and physiological interpretation. Br J Anaesth. 2018;120(3):484500. PubMed ID: 29452805 doi:10.1016/j.bja.2017.10.020

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mezzani A, Agostoni P, Cohen-Solal A, et al. Standards for the use of cardiopulmonary exercise testing for the functional evaluation of cardiac patients: a report from the Exercise Physiology Section of the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2009;16(3):24967. PubMed ID: 19440156 doi:10.1097/HJR.0b013e32832914c8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Orenstein DM. Assessment of exercise pulmonary function. In: Rowland TW, ed. Pediatric Laboratory Exercise Testing: Clinical Guidelines. Leeds, UK: Human Kinetics; 1993, pp. 14163.

    • Search Google Scholar
    • Export Citation
  • 28.

    Quinlivan R, Lucia A, Scalco RS, et al. Report on the EUROMAC McArdle Exercise Testing Workshop, Madrid, Spain, 11–12 July 2014. Neuromuscul Disord. 2015;25(9):73945. PubMed ID: 26159598 doi:10.1016/j.nmd.2015.05.009

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rowland TW. Aerobic exercise testing protocols. In: Rowland TW, ed. Pediatric Laboratory Exercise Testing: Clinical Guidelines. Champaign, IL: Human Kinetics; 1993, pp. 1941.

    • Search Google Scholar
    • Export Citation
  • 30.

    Rowland TW. Ventilation responses. In: Rowland TW, ed. Children’s Exercise Physiology. Champaign, IL: Human Kinetics; 2005, pp. 13547.

    • Search Google Scholar
    • Export Citation
  • 31.

    Rowland TW, Cunningham LN. Development of ventilatory responses to exercise in normal white children: a longitudinal study. Chest. 1997;111(2):32732. PubMed ID: 9041977 doi:10.1378/chest.111.2.327

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Rowland TW, Cunningham LN. Oxygen uptake plateau during maximal treadmill exercise in children. Chest. 1992;101(2), p. 4859. PubMed ID: 1735277 doi:10.1378/chest.101.2.485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Sabath R III, White D, Tenson K. Exercise testing protocols. In: Rowland TW, ed. Cardiopulmonary Exercise Testing in Children and Adolescents. Champaign, IL: Human Kinetics; 2018:p.37.

    • Search Google Scholar
    • Export Citation
  • 34.

    Sovtic AD, Minic PB, Kosutic J, Markovic-Sovtic GP, Gajic MB. Static hyperinflation is associated with decreased peak exercise performance in children with cystic fibrosis. Respir Care. 2013;58(2):2917. PubMed ID: 22781548 doi:10.4187/respcare.01946

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35.

    Sue DY. Excess ventilation during exercise and prognosis in chronic heart failure. Am J Respir Crit Care Med. 2011;183(10):130210. PubMed ID: 21257789 doi:10.1164/rccm.201006-0965CI

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36.

    Sun XG, Hansen JE, Garatachea N, Storer TW, Wasserman K. Ventilatory efficiency during exercise in healthy subjects. Am J Respir Crit Care Med. 2002;166(11):14438. PubMed ID: 12450934 doi:10.1164/rccm.2202033

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Takayanagi Y, Koike A, Nagayama O, et al. Clinical significance of the overshoot phenomena of respiratory gas indices during recovery from maximal exercise testing. J Cardiol. 2017;70(6):598606. PubMed ID: 28528994 doi:10.1016/j.jjcc.2017.03.012

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38.

    Takken T, Blank AC, Hulzebos EH, Van Brussel M, Groen WG, Helders PJ. Cardiopulmonary exercise testing in congenital heart disease: (contra)indications and interpretation. Neth Heart J. 2009;17(10):38592. PubMed ID: 19949648 doi:10.1007/BF03086289

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39.

    Takken T, Bongers BC, van Brussel M, Haapala EA, Hulzebos EHJ. Cardiopulmonary exercise testing in pediatrics. Ann Am Thorac Soc. 2017;14, Suppl 1:S1238. doi:10.1513/AnnalsATS.201611-912FR

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Takken T, Groen WG, Hulzebos EH, et al. Exercise stress testing in children with metabolic or neuromuscular disorders. Int J Pediatr. 2010;2010: 16. PubMed ID: 20706686 doi:10.1155/2010/254829

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Takken T, Van Brussel M, Hulzebos EHJ, eds. Algemene inspanningsfysiologie. In: Inspanningsfysiologie bij kinderen. Houten, The Netherlands: Bohn Stafleu van Loghum; 2008, pp. 1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1):1536. PubMed ID: 11153730 doi:10.1016/S0735-1097(00)01054-8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43.

    Toma N, Bicescu G, Enache R, Dragoi R, Cinteza M. Cardiopulmonary exercise testing in differential diagnosis of dyspnea. Maedica. 2010;5(3):2148. PubMed ID: 21977155

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44.

    Unnithan V, Rowland TW. Use of oxygen pulse in predicting Doppler-derived maximal stroke volume in adolescents. Pediatr Exerc Sci. 2015;27(3):4128. PubMed ID: 26186706 doi:10.1123/pes.2014-0215

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45.

    Urquhart DS, Vendrusculo FM. Clinical interpretation of cardiopulmonary exercise testing in cystic fibrosis and implications for exercise counselling. Paediatr Respir Rev. 2017;24:728. PubMed ID: 26515919 doi:10.1016/j.prrv.2015.09.009

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46.

    Wasserman K. Determinants and detection of anaerobic threshold and consequences of exercise above it. Circulation. 1987;76(6):VI2939. PubMed ID: 3315297

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47.

    Wasserman K, Hansen JE, Sue DY. Principles of Exercise Testing and Interpretation: Pathophysiology and Clinical Applications. Philadelphia, PA: Lippincott Williams & Wilkins; 2005.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 778 711 49
Full Text Views 45 40 0
PDF Downloads 28 26 0