Validity of the Supramaximal Test to Verify Maximal Oxygen Uptake in Children and Adolescents

in Pediatric Exercise Science
View More View Less
  • 1 University of Exeter
  • 2 University of Exeter Medical School
Restricted access

Purchase article

USD  $24.95

Student 1 year online subscription

USD  $69.00

1 year online subscription

USD  $92.00

Student 2 year online subscription

USD  $131.00

2 year online subscription

USD  $175.00

Purpose: This study had 2 objectives: (1) to examine whether the validity of the supramaximal verification test for maximal oxygen uptake (V˙O2max) differs in children and adolescents when stratified for sex, body mass, and cardiorespiratory fitness and (2) to assess sensitivity and specificity of primary and secondary objective criteria from the incremental test to verify V˙O2max. Methods: In total, 128 children and adolescents (76 male and 52 females; age: 9.3–17.4 y) performed a ramp-incremental test to exhaustion on a cycle ergometer followed by a supramaximal test to verify V˙O2max. Results: Supramaximal tests verified V˙O2max in 88% of participants. Group incremental test peak V˙O2 was greater than the supramaximal test (2.27 [0.65] L·min−1 and 2.17 [0.63] L·min−1; P < .001), although both were correlated (r = .94; P < .001). No differences were found in V˙O2 plateau attainment or supramaximal test verification between sex, body mass, or cardiorespiratory fitness groups (all Ps > .18). Supramaximal test time to exhaustion predicted supramaximal test V˙O2max verification (P = .04). Primary and secondary objective criteria had insufficient sensitivity (7.1%–24.1%) and specificity (50%–100%) to verify V˙O2max. Conclusion: The utility of supramaximal testing to verify V˙O2max is not affected by sex, body mass, or cardiorespiratory fitness status. Supramaximal testing should replace secondary objective criteria to verify V˙O2max.

Sansum, Weston, Bond, O’Connor, Tomlinson, Williams, and Barker are with Children’s Health and Exercise Research Centre, Sport and Health Sciences, University of Exeter, Exeter, United Kingdom. Cockcroft is with NIHR Collaboration for Leadership in Applied Health Research and Care South West Peninsula (PenCLAHRC), University of Exeter Medical School, University of Exeter, Exeter, United Kingdom.

Barker (A.R.Barker@exeter.ac.uk) is corresponding author.
  • 1.

    Armstrong N, Kirby BJ, McManus AM, Welsman JR. Aerobic fitness of prepubescent children. Ann Hum Biol. 1995;22(5):42741. PubMed ID: 8744997 doi:10.1080/03014469500004102

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2.

    Armstrong N, Welsman J, Winsley R. Is peak VO2 a maximal index of children’s aerobic fitness? Int J Sports Med. 1996;17(5):3569. PubMed ID: 8858407 doi:10.1055/s-2007-972860

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Armstrong N, Welsman JR. Assessment and interpretation of aerobic fitness in children and adolescents. Exerc Sport Sci Rev. 1994;22:43576. PubMed ID: 7925551 doi:10.1249/00003677-199401000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Astorino TA, DeRevere J. Efficacy of constant load verification testing to confirm VO2 max attainment. Clin Physiol Funct Imaging. 2017;38(4):7039. PubMed ID: 28940974 doi:10.1111/cpf.12474

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Barker AR, Williams CA, Jones AM, Armstrong N. Establishing maximal oxygen uptake in young people during a ramp cycle test to exhaustion. Br J Sports Med. 2011;45(6):498503. PubMed ID: 19679577 doi:10.1136/bjsm.2009.063180

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Barker AR, Williams CA, Tolfrey K, Fawkner S, Sandercock G. The BASES expert statement on measurement and interpretation of aerobic fitness in young people. Sport Exerc Scientist. 2013;37:1011.

    • Search Google Scholar
    • Export Citation
  • 7.

    Bhammar DM, Stickford JL, Bernhardt V, Babb TG. Verification of maximal oxygen uptake in obese and nonobese children. Med Sci Sports Exerc. 2017;49(4):70210. PubMed ID: 27875494 doi:10.1249/MSS.0000000000001170

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Bongers BC, van Brussel M, Hulzebos EHJ, Takken T. Pediatric Norms for Cardiopulmonary Exercise Testing: In Relation to Sex and Age. 2nd ed. Den Bosch, The Netherlands: Box Press; 2014.

    • Search Google Scholar
    • Export Citation
  • 9.

    Brown JD, Mahon AD, Plank DM. Attainment of maximal exercise criteria in boys and men. J Sports Med Phys Fitness. 2002;42(2):13540. PubMed ID: 12032407

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Caspersen CJ, Powell KE, Christenson GM. Physical-activity, exercise, and physical-fitness—definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):12631. PubMed ID: 3920711

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11.

    Cohen J. A power primer. Psychol Bull. 1992;112(1):1559. PubMed ID: 19565683 doi:10.1037/0033-2909.112.1.155

  • 12.

    Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240. PubMed ID: 10797032 doi:10.1136/bmj.320.7244.1240

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Day JR, Rossiter HB, Coats EM, Skasick A, Whipp BJ. The maximally attainable VO2 during exercise in humans: the peak vs maximum issue. J Appl Physiol. 2003;95(5):19017. PubMed ID: 12857763 doi:10.1152/japplphysiol.00024.2003

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    Dencker M, Thorsson O, Karlsson MK, Lindén C, Eiberg S, Wollmer P, Andersen LB. Gender differences and determinants of aerobic fitness in children aged 8-11 years. Eur J Appl Physiol. 2007;99(1):1926. PubMed ID: 17024465 doi:10.1007/s00421-006-0310-x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15.

    Duff DK, De Souza AM, Human DG, Potts JE, Harris KC. A novel treadmill protocol for exercise testing in children: the British Columbia Children’s Hospital protocol. BMJ Open Sport Exerc Med. 2017;3(1):000197.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Hill DW, Poole DC, Smith JC. The relationship between power and the time to achieve VO2max. Med Sci Sports Exerc. 2002;34(4):70914. PubMed ID: 11932583

    • Search Google Scholar
    • Export Citation
  • 17.

    Högström G, Nordström A, Nordström P. Aerobic fitness in late adolescence and the risk of early death: a prospective cohort study of 1.3 million Swedish men. Int J Epidemiol. 2016;45(4):115968. doi:10.1093/ije/dyv321

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Högström G, Nordström A, Nordström P. High aerobic fitness in late adolescence is associated with a reduced risk of myocardial infarction later in life: a nationwide cohort study in men. Eur Heart J. 2014;35(44):313340. PubMed ID: 24398666 doi:10.1093/eurheartj/eht527

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Continuing Educ Anaesth Crit Care Pain. 2008;8(6):2213. doi:10.1093/bjaceaccp/mkn041

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Martin Bland J, Altman D. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986;327(8476):30710. doi:10.1016/S0140-6736(86)90837-8

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Moore SA, McKay HA, Macdonald H, Nettlefold L, Baxter-Jones AD, Cameron N, Brasher PM. Enhancing a somatic maturity prediction model. Med Sci Sports Exerc. 2015;47(8):175564. PubMed ID: 25423445 doi:10.1249/MSS.0000000000000588

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Murias JM, Pogliaghi S, Paterson DH. Measurement of a true VO2max during a ramp incremental test is not confirmed by a verification phase. Front Physiol. 2018;9:143. PubMed ID: 29535642 doi:10.3389/fphys.2018.00143

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Myers J, Walsh D, Buchanan N, Froelicher VF. Can maximal cardiopulmonary capacity be recognised by a plateau in oxygen-uptake. Chest. 1989;96(6):13126. PubMed ID: 2582837 doi:10.1378/chest.96.6.1312

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Ortega FB, Ruiz JR, Castillo MJ, Sjostrom M. Physical fitness in childhood and adolescence: a powerful marker of health. Int J Obes. 2008;32(1):111. doi:10.1038/sj.ijo.0803774

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Pivarnik JM, Dwyer MC, Lauderdale MA. The reliability of aerobic capacity VO2max testing in adolescent girls. Res Q Exerc Sport. 1996;67(3):3458. PubMed ID: 8888423 doi:10.1080/02701367.1996.10607962

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Poole DC, Jones AM. Measurement of the maximum oxygen uptake VO2max: VO2peak is no longer acceptable. J Appl Physiol. 2017;122(4):9971002. PubMed ID: 28153947 doi:10.1152/japplphysiol.01063.2016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Poole DC, Wilkerson DP, Jones AM. Validity of criteria for establishing maximal VO2 uptake during ramp exercise tests. Eur J Appl Physiol. 2008;102(4):40310. PubMed ID: 17968581 doi:10.1007/s00421-007-0596-3

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    Raine L, Drollette E, Kao S-C, et al. The associations between adiposity, cognitive function, and achievement in children. Med Sci Sports Exerc. 2018;50(9):186874. PubMed ID: 29727406 doi:10.1249/MSS.0000000000001650

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29.

    Rivera-Brown AM, Rivera MA, Frontera WR. Applicability of criteria for V ˙ O 2 max in active adolescents. Pediatr Exerc Sci. 1992;4(4):3319. doi:10.1123/pes.4.4.331

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Rivera-Brown AM, Rivera MA, Frontera WR. Reliability of VO2max in adolescent runners: a comparison between plateau achievers and nonachievers. Pediatr Exerc Sci. 1995;7:20310. doi:10.1123/pes.7.2.203

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Robben KE, Poole DC, Harms CA. Maximal oxygen uptake validation in children with expiratory flow limitation. Pediatr Exerc Sci. 2013;25(1):84100. PubMed ID: 23406709 doi:10.1123/pes.25.1.84

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32.

    Rowland TW. Does peak VO2 reflect VO2max in children?: evidence from supramaximal testing. Med Sci Sports Exerc. 1993;25(6):68993. PubMed ID: 8321105 doi:10.1249/00005768-199306000-00007

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33.

    Rowland TW, Cunningham LN. Oxygen uptake plateau during maximal treadmill exercise in children. Chest. 1992;101(2):4859. PubMed ID: 1735277 doi:10.1378/chest.101.2.485

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34.

    Saynor ZL, Barker AR, Oades PJ, Williams CA. A protocol to determine valid VO2max in young cystic fibrosis patients. J Sci Med Sport. 2013;16(6):53944. PubMed ID: 23510652 doi:10.1016/j.jsams.2013.01.010

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Schaun GZ. The maximal oxygen uptake verification phase: a light at the end of the tunnel? Sports Med Open. 2017;3(1):44. doi:10.1186/s40798-017-0112-1

  • 36.

    Taylor HL, Buskirk E, Henschel A. Maximal oxygen intake as an objective measure of cardio-respiratory performance. J Appl Physiol. 1955;8(1):7380. PubMed ID: 13242493 doi:10.1152/jappl.1955.8.1.73

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37.

    Welsman J, Bywater K, Farr C, Welford D, Armstrong N. Reliability of peak VO2 and maximal cardiac output assessed using thoracic bioimpedance in children. Eur J Appl Physiol. 2005;94(3):22834. PubMed ID: 15827735 doi:10.1007/s00421-004-1300-5

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Welsman JR, Armstrong N. Statistical techniques for interpreting body size-related exercise performance during growth. Pediatr Exerc Sci. 2000;12(2):11227. doi:10.1123/pes.12.2.112

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Welsman JR, Armstrong N, Nevill AM, Winter EM, Kirby BJ. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc. 1996;28(2):25965. PubMed ID: 8775163 doi:10.1097/00005768-199602000-00016

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40.

    Wood RE, Hills AP, Hunter GR, King NA, Byrne NM. VO2max in overweight and obese adults: do they meet the threshold criteria? Med Sci Sports Exerc. 2010;42(3):4707. PubMed ID: 19952821 doi:10.1249/MSS.0b013e3181b666ad

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 604 464 90
Full Text Views 55 25 3
PDF Downloads 41 26 4