Development and Validation of a PACER Prediction Equation for VO2peak in 10- to 15-Year-Old Youth

in Pediatric Exercise Science
Restricted access

Purchase article

USD $24.95

Student 1 year subscription

USD $68.00

1 year subscription

USD $90.00

Student 2 year subscription

USD $129.00

2 year subscription

USD $168.00

Previous progressive aerobic cardiovascular endurance run (PACER) equations were developed to estimate peak oxygen consumption (VO2peak) from data collected during treadmill running. No equation has been developed using VO2peak assessed during the PACER. Purpose: To develop and validate a prediction equation to estimate VO2peak from the PACER in 10- to 15-year-olds. Methods: A sample of 163 youth were recruited to develop (n = 101) and validate (n = 62) a prediction equation. VO2peak was measured using a portable metabolic unit. Regression analysis yielded a prediction equation that included laps, body mass index, and interaction between sex and age. Correlations and repeated-measures analysis of variances were used to compare the measured and estimated VO2peak from the new Scott et al equation and 2 commonly used FitnessGram™ (Mahar et al 2011 and Mahar et al 2018) equations, and the impact of sex on predicted VO2peak. Results: Predicted VO2peak from the Mahar et al 2011 and 2018 equations was significantly lower compared with measured values, and the Scott et al prediction was not different. The Mahar et al 2018 equation tended to overestimate VO2peak in males but worked well for females. The Mahar et al 2011 and Scott et al equations revealed no sex differences. Conclusions: The Scott et al equation resulted in a more accurate estimate of VO2peak, performing equally well for both sexes.

Scott is with the Governor’s Foundation for Health and Wellness, Knoxville, TN. Springer, McClanahan, Wiseman, Kybartas, and Coe are with The University of Tennessee, Knoxville, Knoxville, TN.

Oody is with Maryville College, Maryville, TN. Coe (dcoe@utk.edu) is corresponding author.
Pediatric Exercise Science
Article Sections
References
  • 1.

    Armstrong NWilliams JRingham D. Peak oxygen uptake and progressive shuttle run performance in boys aged 11–14 years. Br J Phys Educ. 1988;19 Suppl 4:101.

    • Search Google Scholar
    • Export Citation
  • 2.

    Artero EGEspana-Romero VCastro-Pinero Jet al. Reliability of field-based fitness tests in youth. Int J Sports Med. 2011;32(3):15969. PubMed ID: 21165805 doi:10.1055/s-0030-1268488

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3.

    Cureton KJMahar MT. Critical measurement issues/challenges in assessing aerobic capacity in youth. Res Q Exerc Sport. 2014;85(2):13643. PubMed ID: 25098009 doi:10.1080/02701367.2014.898979

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4.

    Gallagher DHeymsfield SBHeo MJebb SAMurgatroyd PRSakamoto Y. Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index. Am J Clin Nutr. 2000;72(3):694701. PubMed ID: 10966886 doi:10.1093/ajcn/72.3.694

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5.

    Lang JJTomkinson GRJanssen Iet al. Making a case for cardiorespiratory fitness surveillance among children and youth. Exerc Sport Sci Rev. 2018;46(2):6675. PubMed ID: 29346159

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6.

    Leger LALambert J. A maximal multistage 20-m shuttle run test to predict VO2max. Eur J App Physiol. 1982;49(1):112. PubMed ID: 7201922 doi:10.1007/BF00428958

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Liu NYPlowman SALooney MA. The reliability and validity of the 20-meter shuttle test in American students 12 to 15 years old. Res Q Exerc Sport. 1992;63(4):3605. PubMed ID: 1439160 doi:10.1080/02701367.1992.10608757

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8.

    Mahar MTGuerieri AMHanna MSKemble CD. Development and validation of a regression model to estimate VO2peak from PACER 20-m shuttle run performance. J Phys Act Health. 2006;3 Suppl 2:3446. doi:10.1123/jpah.3.s2.s34

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9.

    Mahar MTGuerieri AMHanna MSKemble CD. Estimation of aerobic fitness from 20-m multistage shuttle run test performance. Am J Prev Med. 2011;41(4) Suppl 2:S11723. PubMed ID: 21961611 doi:10.1016/j.amepre.2011.07.008

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10.

    Mahar MTWelk GRowe DA. Estimation of aerobic fitness from PACER performance with and without body mass index. Meas Phys Educ Exerc Sci. 2018;22(3):23949. doi:10.1080/1091367X.2018.1427590

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Malina RMBeunen GLefevre JWoynarowska B. Maturity-associated variation in peak oxygen uptake in active adolescent boys and girls. Ann Hum Biol. 1997;24(1):1931. PubMed ID: 9022903 doi:10.1080/03014469700004742

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12.

    Malina RMBeunen GPClassens ALet al. Fatness and physical fitness of girls 7 to 17 years. Obes Res. 1995;3(3):22131. PubMed ID: 7627770 doi:10.1002/j.1550-8528.1995.tb00142.x

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13.

    Mayorga-Vega DAguilar-Soto PViciana J. Criterion-related validity of the 20-m shuttle run test for estimating cardiorespiratory fitness: a meta-analysis. J Sports Sci Med. 2015;14(3):53647. PubMed ID: 26336340

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14.

    McVeigh SKPayne ACScott S. The reliability and validity of the 20-meter shuttle test as a predictor of peak oxygen uptake in Edinburgh school children, age 13 to 14 years. Pediatr Exerc Sci. 1995;7(1):6979. doi:10.1123/pes.7.1.69

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Mei ZGrummer-Strawn LMPietrobelli AGoulding AGoran MIDietz WH. Validity of body mass index compared with other body-composition screening indexes for the assessment of body fatness in children and adolescents. Am J Clin Nutr. 2002;75(6):97885. PubMed ID: 12036802 doi:10.1093/ajcn/75.6.978

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16.

    Melo XSanta-Clara HAlmeida JPet al. Comparing several equations that predict peak VO2 using the 20-m multistage-shuttle run-test in 8–10-year-old children. Eur J Appl Physiol. 2011;111(5):83949. PubMed ID: 21063724 doi:10.1007/s00421-010-1708-z

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17.

    Meredith MDWelk GJ editors. Fitnessgram & Activitygram Test Administration Manual. Champaign, IL: Human Kinetics; 2010.

  • 18.

    Perret CMueller G. Validation of a new portable ergospirometric device (Oxycon Mobile) during exercise. Int J Sports Med. 2006;27(5):3637. PubMed ID: 16729377 doi:10.1055/s-2005-865666

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19.

    Pivarnik JMCoe DP. Aerobic Exercise Testing in Children and Adolescents. Wellesley, MA: UpToDate in Pediatrics; 2017. http://www.uptodate.com/contents/overview-ofaerobic-exercise-testing-in-children-and-adolescents. Accessed May 23 2017.

    • Search Google Scholar
    • Export Citation
  • 20.

    Robergs RADwyer DAstorino T. Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Med. 2010;40(2):95111. PubMed ID: 20092364 doi:10.2165/11319670-000000000-00000

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21.

    Rosdahl HGullstrand LSalier-Eriksson JJohansson PSchantz P. Evaluation of the Oxycon mobile metabolic system against the Douglas bag method. Eur J Appl Physiol. 2010;109(2):15971. PubMed ID: 20043228 doi:10.1007/s00421-009-1326-9

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22.

    Rowland TW. Children’s Exercise Physiology. 2nd ed. Champaign, IL: Human Kinetics; 2005.

  • 23.

    Ruiz JRCastro-Pinero JArtero EGet al. Predictive validity of health-related fitness in youth: a systematic review. Br J Sports Med. 2009;43(12):90923. PubMed ID: 19158130 doi:10.1136/bjsm.2008.056499

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24.

    Ruiz JRSilva GOliveira NRibeiro JCOliveira JFMota J. Criterion-related validity of the 20-m shuttle run test in youths aged 13 to 19 years. J Sport Sci. 2009;27(9):899906. doi:10.1080/02640410902902835

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Saint-Maurice PFWelk GJLaurson KRBrown DD. Measurement agreement between estimates of aerobic fitness in youth: the impact of body mass index. Res Q Exerc Sport. 2014;85(1):5967. PubMed ID: 24749237 doi:10.1080/02701367.2013.872217

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26.

    Scott SNThompson DLCoe DP. The ability of the PACER to elicit peak exercise response in youth [corrected]. Med Sci Sports Exerc. 2013;45(6):113943. PubMed ID: 23274606 doi:10.1249/MSS.0b013e318281e4a8

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27.

    Utter ACRobertson RJNieman DCKang J. Children’s OMNI scale of perceived exertion: walking/running evaluation. Med Sci Sports Exerc. 2002;34(1):13944. PubMed ID: 11782659 doi:10.1097/00005768-200201000-00021

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
Article Metrics
All Time Past Year Past 30 Days
Abstract Views 89 89 14
Full Text Views 7 7 5
PDF Downloads 2 2 0
Altmetric Badge
PubMed
Google Scholar